
Online representation learning
in the state update function

Rich Sutton
Summer, 2009

• we don’t want to be batch

• because we have a use for improvements in rep’n
as soon as we can find them

• because we want to handle nonstationarity

• we have a natural source of multiple tasks

• knowledge! learning to predict everything

• some will be easy, some hard

• effectively a sequence of tasks of graded difficulty

Rep’n learning is a little
different in RL

outline

1. the state-update function

2. the expand-and-add architecture

3. an insight into how to combine them nicely

RLAI architecture has two parts

• the reactive part contains all the things that must
run at the fastest rate of agent-environment
interaction

• e.g., in the critterbot, this is 100 times a
second

• the agent’s state rep’n must be updated this
fast

• the deliberative part is slower, accumulative

• responsible for planning, cognition

RLAI architecture (reactive part)

• everything updates and learns 100 times a second
• the pulse of the mind

st+1

at ot+1

dt

state update

st

w o r l d

The (agent-)state update function

st+1

at ot+1

dt

state update

st

w o r l d

• the state-update function u
creates/defines the state

• state update = perception

• changes in u = representation
learning

• state is used by the demons to
make predictions, learn policies

• state is also used for planning
(not covered here)

st+1 = u(st ,at ,ot+1)

RLAI architecture (demons)

• the demons don’t directly affect
the state-update function

• but they can provide a reason
for changing state update

• they provide a large set of tasks
(general value functions)

• a feature good for one demon
might also be good for another

• the demons are the tester in
the generate-and-test search
for good state features

st+1

at ot+1

dt

state update

st

w o r l d

outline

1. the state-update function

2. the expand-and-add architecture

3. an insight into how to combine them nicely

Expand and Add
the world’s most popular function-approximation architecture

for example:

• tile coding

• radial basis functions

• support vector machines

• the original perceptron

• coarse coding

• kanerva coding

many sparsely-activated features/prototypes

original inputs

output layer

input layer

hidden
layer

(rep’n)
massively-expansive, fixed,

nonlinear map

linear, learned map

outputs

Expand and Add
the world’s most popular function-approximation architecture

strengths:

• fast learning

• learns well online or batch

• powerful (expressive)

• well suited to representation
learning

many sparsely-activated features/prototypes

original inputs

output layer

input layer

hidden
layer

(rep’n)
massively-expansive, fixed,

nonlinear map

linear, learned map

outputs

LTU-based Expand and Add
using Linear Threshold Units (LTUs) to form the feature rep’n

0100110110010

LTUs s∈{0,1}n

random weights
wij∈±1

learned
weights θij∈R

binary inputs x∈{0,1}p

linear outputs d∈Rm ∑ di = θij
j
∑ s j

σ (x) = 1 if x > threshold else 0

si = σ wij
j
∑ x j
⎛

⎝⎜
⎞

⎠⎟

Can we map this onto the state-update function?

outline

1. the state-update function

2. the expand-and-add architecture

3. an insight into how to combine them nicely

s t+
1

a t
o t
+1

d t

st
at

e
up

da
te

s t

w
 o

 r
 l

d

salience (step-size)
• let each feature i have a step-size, αi ∈ R+,

also called its salience

• this determines how much the demons
will generalize according to that feature

• important features should have high
salience, irrelevant ones low salience

• salience is an important part of the rep’n

• IDBD and similar algorithms can be used
to learn salience

demon functions may
depend on all old data,
and in a non-linear way

dt - demons

st - state features

st-1 - old-state features
at-1,ot
data

st-2 - older-state features
at-2,ot-1
data

st-3 - older-state features
at-3,ot-2
data

demons are linear
features are LTUs

dt - demons

st - state features

st-1 - old-state features
at-1,ot
data

dt - demons

st - state features

st-1 - old-state features
at-1,ot
data

high
salience

low
salience

candidate features

valuable
features

moderate
salience

st - state features

st-1 - old-state features
at-1,ot
data

dt - demons

fast slow

slower (imprinting)
static or
v. slow

candidate features

valuable
features

imprinting

• imprint candidate features on time steps
of high demon error

• if error is low on a time step, then do
nothing

• if error is high, then try to make a
feature that responds preferentially and
distinctly to that time step

• such a feature will help you reduce
demon error in the future

support and valuableness
• state components (features) may be valuable

because they are salient, or because they are
used to construct features that are salient

• thus valuableness can be propagated from
component to component

• we say that salient states are “valuable”, and
valueableness propagates by supporting
relationships

• perhaps with a little friction, so that mutually
supporting but non-salient components die
off

conclusion

• state-update and expand-and-add combine nicely

• the state vector is both the small input vector
and the massively expanded feature vector

• via salience

• recursion, and thus higher-order features, is
immediate

• we should be able to get fast, online learning and
representation learning—generate and test
through random feature space

