Online representation learning
in the state update function

Rich Sutton
Summer, 2009

Rep’'n learning is a little
different in RL

® we don’t want to be batch

® because we have a use for improvements in rep’n
as soon as we can find them

® because we want to handle nonstationarity
® we have a natural source of multiple tasks

® knowledge! learning to predict everything

® some will be easy, some hard

o cffectively a sequence of tasks of graded difficulty

outline

|. the state-update function
2. the expand-and-add architecture

3. an insight into how to combine them nicely

RLAI architecture has two parts

® the reactive part contains all the things that must
run at the fastest rate of agent-environment
Interaction

® e.g.,in the critterbot, this is 100 times a
second

® the agent’s state rep’n must be updated this
fast

® the deliberative part is slower, accumulative

® responsible for planning, cognition

RLAI architecture (reactive part)

St I St+1

d

* everything updates and learns 100 times a second
* the pulse of the mind

The (agent-)state update function

Si41 = M(St’at’0t+l)

[+

® the state-update function u
creates/defines the state

® state update = perception

® changes in u = representation
learning

St+1 :
o e state is used by the demons to

make predictions, learn policies

® state is also used for planning
(not covered here)

RLAI architecture (demons)

St+1

the demons don’t directly affect
the state-update function

but they can provide a reason
for changing state update

they provide a large set of tasks
(general value functions)

a feature good for one demon
might also be good for another

the demons are the tester in
the generate-and-test search
for good state features

outline

|. the state-update function
=3 2. the expand-and-add architecture

3. an insight into how to combine them nicely

Expand and Add

the world’s most popular function-approximation architecture

T for example:

output layer

® tile coding
/ear,learnedN ® radial basis functions
hidden

GVl many sparsely-activated features/prototypes ® support vector machines
(rep’n)

massively-expansive, fixed,

nonlinear map ® the original perceptron

input layer) ® coarse coding

T ® kanerva coding

Expand and Add

the world’s most popular function-approximation architecture

1

output layer strengths:
. ® fast learning
linear, learned map
hidden :
® |earns well online or batch
Iaye r many sparsely-activated features/prototypes
rep’n :
(rep’n) massively-expansive, fixed, ® powerful (expresswe)
nonlinear map
® well suited to representation
Input Iayer Oor ’};JN"J)J T1IPULS Iearning

T

LT U-based Expand and Add

using Linear Threshold Units (LTUs) to form the feature rep’n

linear outputs de R™

-

learned
weights 0;€R

\ random weights
wijet] o(x)=11f x > threshold else O

LTUs se{0,1}

binary inputs xe{0,1}”

Can we map this onto the state-update function?

outline

|. the state-update function
2. the expand-and-add architecture

=3 3. an insight into how to combine them nicely

[+HI$N

(4

salience (step-size)

® |et each feature i have a step-size, &; € ‘R",

also called its salience

® this determines how much the demons
will generalize according to that feature

® important features should have high
salience, irrelevant ones low salience

® salience is an important part of the rep’n

® |DBD and similar algorithms can be used
to learn salience

demon functions may
depend on all old data,
and in a non-linear way

d; - demons

A
_ St - state features deans are |inea|~
features are LTUs
S+1 - old-state features
Adt-1,0¢
data
S+.o = older-state features
at-2)0t-1
data
S:.3 - older-state features
Adt-3,01-2

data

d; - demons

A

[st - state features

S:+1 - old-state features
at-1,0¢
data

d; - demons

A
valuable
features
. candidate features | §; - state features
high low
salienge salience
moderate
lence [St-1 - old-state features
Adt-1,0t¢

data

d; - demons

¢
fast slow
valuable
features
candidate features | §; - state features
static or | (inting)
siower (Imprintin
v. slow P &
St+1 - old-state features
Adt-1,0t¢

data

Imprinting

® imprint candidate features on time steps
of high demon error

® if error is low on a time step, then do
nothing

® if error is high, then try to make a
feature that responds preferentially and
distinctly to that time step

® such a feature will help you reduce
demon error in the future

support and valuableness

® state components (features) may be valuable
because they are salient, or because they are
used to construct features that are salient

® thus valuableness can be propagated from
component to component

® we say that salient states are “valuable”, and
valueableness propagates by supporting
relationships

® perhaps with a little friction, so that mutually

supporting but non-salient components die
off

conclusion

® state-update and expand-and-add combine nicely

® the state vector is both the small input vector
and the massively expanded feature vector

® via salience

® recursion, and thus higher-order features, is
immediate

® we should be able to get fast, online learning and
representation learning—sgenerate and test
through random feature space

