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Main message: 

Deep learning does not work for continual learning
• by “not work” i mean that learning slows, eventually to a very low level

• by “deep learning” I mean the standard methods specialized to work in one-time learning

• without replay buffers (which themselves are an acknowledgement that DL doesn’t work)

Better learning algorithms, specialized for continual learning, are not hard to find.

But we have to start looking for them, we have to get out of the rut!



Earlier indications of problems with deep continual learning

• Catastrophic Forgetting (French, 1999; McCloskey & Cohen, 1989)

• Loss of Plasticity in early neural networks in the psych literature (Ellis & Ralph, 
2000; Zevin & Seidenberg, 2002; Bonin et al., 2004)

• The failure of warm-starting (Ash & Adams, 2020)

• Primacy Bias and resetting in Deep RL (Nikishin et al., 2022)

• Capacity Loss in RL (Lyle et al, 2022)

But no one has done a direct test or demonstration of Loss of Plasticity 
in supervised learning



Plasticity = the ability to learn

Loss of Plasticity = Loss of the ability to learn   
                                         = not being able to learn continually  

                      = not continual learning

 Maintaining Plasticity = maintaining the ability to learn

At CoLLAs, we prioritize maintaining plasticity



Outline

• Demonstrations of Loss of Plasticity  
(in continual versions of ImageNet, MNIST, and generic regression)

• Understanding Loss of Plasticity

• Existing Methods that try to Maintain Plasticity

• A Simple Extension of Backprop, Continual Backprop,  
that Fully Succeeds in Maintaining Plasticity



How can we make a direct test of continual learning?

• We could use a single non-stationary task

• or a sequence of different tasks  
with no indication to the learner of the changes

• It could be a reinforcement learning task, but…that’s complicated

• It could be supervised. It could be classic classification. Why not?

• Perhaps we could use a classic deep-learning dataset  
like ImageNet or MNIST?



ImageNet
a classic deep learning problem



ImageNet Dataset
• A database of millions of images labelled by nouns (classes)

• 1000 classes with 700 or more images

• Widely used in to learn classification:   image⇒class

⇒ The Continual ImageNet Problem
• Here we seek a minimal change from Deep Learning practice

• Each class separated into 600 training examples and 100 test examples

• Classes taken in pairs to produce a sequence of 500+ binary classification tasks

• e.g., Class1 vs Class2, 1200 training examples, 200 test examples,  
then Class3 vs Class4, 1200 training examples, 200 test examples, etc

• Performance measure: %correct on test set (by argmax) at end of each task

• Averaged over 30 independent runs, varying class pairings, test sets



Network and Training Procedure (ImageNet)
• All 500 binary classification tasks share the same network, heads reset at task switch

• Standard neural network, though slightly narrow for ImageNet (bc. only 2 classes at a time)  
(3 convolution layers of 32/64/128 filters + 3 fully-interconnected layers of 128/128/2 units)

• For each task, 12 batches of 100 examples, 250 epochs (passes through the data)

• Weights initialized by Kaiming distribution, only once, before the first task

• SGD with momentum on the cross-entropy loss, ReLU activations

• Many variations on the network and hyper-parameters were tested  
to obtain good and representative performance on the first task

How will performance evolve over the sequence of tasks?
Will performance be better on the 1st task or the 2nd task? the 500th?



Continual ImageNet Results (initial performance)

• Chance performance is 50% 

• Shaded region is one standard error 

• Linear baseline is the performance of 
linear heads direct from pixels

%Correct
on Test Set

(at end of each task,  
averaged over 30 runs)

Learning rate (plasticity) sometimes improves over early tasks, then…?
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Continual ImageNet Results — Overview

For good hyper-parameters, plasticity decreases across tasks, 
nearing the poor performance level of a one-layer (linear) network, or worse

• Performance on first task is ≈89% 

• This data is representative, the details 
depend on the details: 

• #epochs 

• step-sizes 

• network sizes 

• Each line takes 24 hours to compute
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“Catastrophic” Loss of Plasticity

%Correct
on Test Set

(at end of each task,  
averaged over 30 runs)

Task number (bins of 50)



MNIST
(to run more thorough, systematic experiments)



MNIST dataset
• 60,000 images of handwritten digits, ten classes 0-9,  

grayscale 28x28 pixels,

⇒ The Continual MNIST Problem

Permuted MNIST Task (Goodfellow et al. 2014; Zenke, Poole, & Ganguli 2017)

• The same 60,000 images with the pixels randomly permuted

• A sequence of Permuted MNIST tasks

• In each task, all 60,000 images presented in a random order

• No indication of the new task (weights initialized once before 1st task)

• Online cross-entropy loss, report argmax %correct



Network and Training Procedure (MNIST)

• Standard neural network — 4 fully-interconnected layers of 
2000/2000/2000/10 units)

• All one-of-ten classification tasks share the same network

• The 10 heads are not re-initialized at task change

• Weights initialized by Kaiming distribution, only once, before the first task

• SGD on the cross-entropy loss, ReLU activations



Backprop on Continual Permuted MNIST (detail)
Alligator graph Superimposed spikes

Online 
Performance
(%Correct averaged  

over 30 runs)

Learning rate (plasticity) improves over early tasks, then degrades

Average over 
spike/task



Online 
Performance
(%Correct averaged  

over 30 runs)

There is substantial loss of plasticity at all step sizes.
Larger networks lose plasticity more slowly, but still lose plasticity.

Backprop on Continual Permuted MNIST (overview)
Effect of network sizeEffect of step size



Understanding loss of plasticity (MNIST)

Units are dying 

A dead unit’s output (and thus its 
plasticity) is always zero

Weights are getting large 

Units are over-committed and 
have become difficult to change

The effective rank of activity in the 
representation layers is falling 

The representation layers are losing 
diversity and expressiveness



• L2-Regularization: All weights shrunk 
towards zero on each training example

• Shink and Perturb: L2 regularization plus 
random noise added to all weights  
(Ash & Adams 2020) 

• Online Normalization: All signals internal to 
the network are shifted and scaled online  
(Chiley et al. 2019)

• Dropout: A random fraction of units set to 
zero in training (Hinton et al. 2012)

Online 
Performance
(%Correct averaged  

over 30 runs)

Do existing DL methods help to maintain plasticity?



Understanding LoP in Existing DL Methods (MNIST)

Shrink & Perturb (but not L2) 
keeps units from dying 

L2 and Shrinking keep the 
weights from getting large

Effective rank is still a problem for 
L2 and Shrink & Perturb



All our ideas and algorithms came from a still smaller problem:

Slowly-Changing Regression (SCR)



Slowly-Changing Regression (SCR)
a new idealized problem targeting continual learning

• Target function is that formed by a 1-hidden-layer 
neural network with random ±1 weights and binary 
(linear threshold) hidden units

• Input is 21 bits

• 1 constant bias bit =1

• 5 bits that are set randomly on every example i.i.d.

• 15 bits that change very slowly; one is selected at 
random, and flipped, every 10,000 steps

• The result is a slowly-changing target function in the 5 
rapidly changing bits

• The learning network has the same structure, but 
learned weights and differential activation function,  
and only 5 hidden units



Systematic study of Backprop (SCR)
varying step size and activation functions



All algorithms vs All activations (SCR)



Systematic Study of Adam-Backprop (SCR)
varying both step size and activation function



Systematic Study of Adam-based algorithms (SCR)
and activation functions



Main message: 

Deep learning does not work for continual learning

• by “not work” I mean that learning slows, eventually to a very low level

• by “deep learning” I mean the standard methods specialized to work in one-time learning

Better learning algorithms, specialized for continual learning, are not hard to find.

But we have to start looking for them, we have to get out of the rut!



Outline

• Demonstrations of Loss of Plasticity  
(in continual versions of ImageNet, MNIST, and generic regression)

• Understanding Loss of Plasticity

• Existing Methods that try to Maintain Plasticity

• A Simple Extension of Backprop, Continual Backprop,  
that Fully Succeeds in Maintaining Plasticity



Is Conventional Backpropagation continual?

• Conventional Backpropagation algorithm:

• Initialization with small random weights

• Gradient Descent at every time-step

• It is not a continual algorithm as it does a critical computation (initialization 
with small random weights) at the beginning which is not repeated again

How can we make the conventional backpropagation algorithm continual? 



Continual Backprop:  
Stochastic Gradient Descent with Selective Reinitialization

• We can just reinitialize occasionally, or a little bit at a time

• And it is better to reinitialize selectively, for example, dead units or 
some other notion of utility

• The idea of selective random initialization was introduced by 
Mahmood and Sutton (2012); they called it generate and test

• We extend the idea to general multi-layer networks



• Extensions to Mahmood’s work:

• General multi-layer networks where fan-out is greater than one

• Consider feature activity in its utility instead of just the outgoing weights 

• Also consider how labile a feature is when computing its utility

• Transfer a feature’s average contribution to the bias of its consumers, 
so the consumers are less affected by the feature’s removal

• (Future direction) A global measure of utility instead of a local measure

• (Future direction) Better generators (initializers)

... wl,i,k

hl,i

wl-1,j,i

Continual Backprop:  
Stochastic Gradient Descent with Selective Reinitialization

Consumers

fan-in

fan-out



Continual Backprop on online Permuted MNIST

Continual Backprop fully maintains plasticity  
and is fairly insensitive to its hyper-parameter, replacement-rate 

Online 
Performance
(%Correct averaged  

over 30 runs)



Understanding Continual Backprop (MNIST)

Continual Backprop has 
almost no dead units 

Continual Backprop keeps the 
weights from getting too large

Continual Backprop maintains a 
high level of effective rank

Continual Backprop seems to solve all the problems of LoP in MNIST



Continual Backprop on ImageNet

%Correct
on Test Set

(at end of each task,  
averaged over 30 runs)

Continual Backprop fully maintains plasticity in ImageNet!

Task number (bins of 50) Task number 
1 1



Extension to a non-stationary RL problem, Slippery Ant
• An agent controlling a PyBullet ant is rewarded for forward movement

• The friction between with the ground changes every 10M time steps

• We use a Continual version of PPO

PPO shows similar degradation in performance as Backdrop.
While Continual PPO maintains most (but not all) of its plasticity.

PPO Continual PPO



Conclusions

• Deep-learning networks are optimized for one-time learning,  
and in a sense they totally fail for continual learning

• Simple changes, like Continual Backprop, can make them effective for continual learning

• Continual Backprop ranks units by their utility to the network’s functioning. There are 
more improvements possible in how ranking is done, particularly for recurrent networks

• There is an exciting world ahead of deep-learning networks that can learn continually

• It opens up great new possibilities in RL (which is inherently continual due to policy 
iteration) and in advanced model-based RL architectures (which learn continually in 
multiple interacting components)



Thank you for your attention


