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Outline

• The sensorimotor approach to knowing

• Robot experiments

• the need for multi-step prediction

• The Horde-of-demons architecture

• Remarks on gradient-TD algorithms 
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Intelligence

• Knowing a lot

• Being able to use what you know flexibly to 
achieve goals (maximize reward)
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1. Learnable—from low-level sensorimotor data

2. Expressive—able to express abstract, high-level 
facts as well as specific, low-level facts

3. Useful—for action and planning

Knowledge should be 

“The problem of knowing”

Intelligence
• Knowing a lot

• Being able to use what you know flexibly to 
achieve goals (maximize reward)
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Examples of stuff to know

• Twitching this muscle lifts 
that finger

• There is a wall behind me

• The toilet is down the hall 
on the left

• The shape of a teacup

• Knowing how to ride a bike

• Knowing how to call a taxi

• My keys are in my pocket

• There is an apple in the box

• There is a book on the table

• My car is red

• People usually have two feet

• The Eiffel tower is in Paris

• John has the flu
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The Sensorimotor View

• In which an agent’s knowledge is viewed as facts 
about the statistics of its sensorimotor data stream

• This point of view is interesting because

• it is reductionist and demystifies world knowledge

• it provides a clear way of thinking about semantics

• it implies that knowledge can be verified and 
learned from data – “the knowledge is in the data”

Thus “Learning About Sensorimotor Data”
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It’s hard to implement the 
Sensorimotor View well
• Where “well” means such that it is

• sound, stable, and efficient with function 
approximation

• scalable to large numbers of predictions learned 
in parallel from the same experience

• real time (online with many updates/second)

• captures multi-step facts

• Achieving these modest goals is highly constraining

Thus a successful implementation can be informative
Wednesday, 21 December, 11



Robot experiments
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The iRobot Create
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“Wall ahead” is a 
sensorimotor fact

bump
data
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Predicting: Will rolling forward 
soon result in a bump?

bump
data

bump
pred
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Predicting right and left bumps

left bump

right bump

both bump

datapred
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Strategy
• To understand the world is to have many  predictions 

about your sensorimotor data stream

• The predictions must be multi-step and policy 
contingent

• because almost all interesting predictions are 
more-than-one-step and policy-contingent

• You must be able to learn from partial executions 

• because then you can learn about many policies in 
parallel

• this will require TD and off-policy learning, and FA
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Temporal-difference 
(TD) learning

• The core learning algorithm of online 
reinforcement learning

• model-free dynamic programming

• Learning driven by TD errors (changes in 
prediction from one time to the next)

• learning a guess from a guess
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TD Learning in 
Engineering and Biology
• TD algorithms are the standard model of 

reward-based learning in both 

• engineering (artificial intelligence and 
optimal control) 

• biology (neuroscience and psychology)

• TD algorithms have been independently 
validated in four distinct fields

• This is an unprecedented convergence
Wednesday, 21 December, 11



TD is in no way specific to 
reward

• TD is a real-time prediction-learning method

• suitable for predicting any signal, not just 
reward

• it is a candidate for a universal prediction-
learning algorithm
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The Horde Architecture

Non-linear 
sparse re-coder 
(e.g., tile coding)

sensorimotor
data

...

predictions

demons

sparse, mostly-binary,
feature representation

PSR
Each demon is
a full RL agent
estimating a
“value” function

each intersection represents 
a modifiable weight
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The Critterbot

Infra-red
sensors
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Infrared-sensor data 
and predictions
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Scaling up: IR predictions for
multiple tiles and policies

sensor
positions

sensor readings

16 tiles/features

different 
policies

predictions
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predictions 
x 6000 

(demons)

sparse binary 
features x 3200

(tile coding)

Scaling Up
continuous observation data x 69
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Learning is fast enough

5 hours of training (100ms time steps)

Mean-
square
error

in
prediction

predictions for various
sensors all approach

minimal values
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Conclusions from 
robot experiments

• Thousands of accurate multi-step predictions 
can be made and learned in real time at 10/
second by linear TD algorithms

• This could not have been done in any other 
way

• Model-free algorithms can learn fast enough 
to be useful

• Real-time learning of sensorimotor knowledge is 
practical and scalable
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The Horde-of-demons 
architecture
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The Horde Architecture

Non-linear 
sparse re-coder 
(e.g., tile coding)

sensorimotor
data

...

predictions

demons

sparse, mostly-binary,
feature representation

PSR
Each demon is
a full RL agent
estimating a
value function
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Inside a GTD(λ) Demon
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General value functions as a language 
for multi-step predictive questions

predictions/answers

Time steps, 10 per second

prediction/
answer
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General value functions as a language 
for multi-step predictive questions

Time steps, 10 per second

prediction/
answer

Exponential “spontaneous” termination
(good for time-discounted sums)

imminent 
rewards (r) are 
more heavily 

weighted
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General value functions as a language 
for multi-step predictive questions

Time steps, 10 per second

prediction/
answer

with reward (r), you can 
predict what happens here

with terminal reward (z), you 
can predict what happens here
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at this time that 

setγto 0
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General value functions as a language 
for multi-step predictive questions

Time steps, 10 per second

prediction/
answer

terminal reward 
(z) weighting

reward (r) weighting
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General value functions—
Fundamental or idiosyncratic?
• GVFs are a powerful rep’n language for the 

semantics of sensorimotor knowledge

• GVFs seem powerful enough to encode 
all scientific knowledge (knowledge with 
experimentally testable predictions)

• But we don’t yet have extensive experience; 
some changes will probably be needed

• Crafted for efficient recursive computations

• Proven utility in control, planning, neuroscience
Wednesday, 21 December, 11



Remarks on 
gradient-TD algorithms
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TD with FA
• TD with function approximation (FA) has 

historically been problematic:

• for linear FA, there has been no TD 
algorithm with linear complexity that is 
sound under off-policy training

• Q-learning diverges with linear FA

• for non-linear FA, there has been no sound 
algorithm with constant per-step comp.

• The root problem is that there have been no 
true gradient-descent TD algorithms

Wednesday, 21 December, 11



TD and GD: Headlines

• Convention gradient-based TD algorithms are not true 
GD (because they ignore the effect on the new guess)

• guaranteed convergent on-policy but not off-policy

• Baird’s Residual Gradient and VAPS methods are GD in 
the wrong objective

• converge to the wrong thing even in tabular case

• Precup’s Importance Sampling methods too slow

• too slow to benefit from parallel off-policy learning

• New true-GD methods (Maei, Szepesvari, Sutton et al.)
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TD(0) can diverge: 
A simple example

TD update:

TD fixpoint:

� 2�
r=1

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

= 0 + 2⇤ � ⇤

= ⇤

�⇤ = �⇥⌅

= �⇤

�� = 0

Diverges!
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TD with FA: Non-GD solutions?
• Linear least-squares methods: LSTD, LSPI

• complexity is O(n2)/step

• Gordon’s averagers, Gaussian Processes

• require storing examples—not scalable FA

• Policy-Gradient methods 

• RL not TD; don’t learn multi-step facts

• Model-based methods

• non-starter for the sensorimotor approach
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The Gradient-TD Family

• GTD(λ) and GQ(λ), for learning GVF  V and Q

• Developed by Maei, Szepesvari, Sutton, Precup, 
Bhatnagar, Silver, Wiewiora 2008-11

• Solve two open problems:

• convergent linear-complexity off-policy TD 
learning

• convergent non-linear TD

• True gradient-descent algorithms
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Gradient-TD convergence theorem

The weights of Gradient TD methods follow the 
gradient of a projected-Bellman-error objective 
function in expected value:

which guarantees convergence to the TD fixpoint 
(under step-size conditions)

ED Δθ[ ] = −α∇θ Vθ − ΠTVθ D

2

vector of estimated values, 
one per state

Bellman operator

projection back 
into the space of 
representable 
functions

gradient vector
of partial derivativesexpectation under

data distribution

2-norm under the
data distribution

step size
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• TD error:

• Linear TD(0):

• Importance sampling ratio:

• Off-policy linear GTD(0)

TD vs Gradient-TD

2nd weight vector
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My message in one sentence

If it’s important for your AI agent to know a lot, 
and you take the sensorimotor approach, 
then you are forced to multi-step predictions, 

and to policy-contingent predictions, 
which require TD (a new reason for TD!), 

and, in fact, a new kind of gradient-TD, 
if you want to proceed in a practical and scalable 
way (linear-complexity function approximation).
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Further frontiers
• Learning directing action: Curiosity, intrinsic 

motivation

• Discovering features and questions

• Better gradient-TD algorithms

• Parallel learning by policy-gradient (actor-
critic) methods?

• Models and planning

• It will be interesting just to keep scaling
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Questions?

• What is the latest on Gradient-TD algs?

• Where do the questions come from?

• How do you know off-policy predictions are accurate?

• How can you be abstract when predictions are about 
low-level data?

• Can you give a simple example/intuition of why 
conventional TD methods diverge?

• Can you show us the simplest gradient-TD algorithm

• How can the predictions be used for action?

• How can GVFs form a world model for planning?
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• And thanks again to Adam White, Joseph 
Modayil, Thomas Degris, and the RLAI group

Thank you for your attention
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