
Multi-step Prediction

Richard Sutton
Reinforcement Learning and Artificial Intelligence Laboratory

Department of Computing Science
University of Alberta

R
A I
L

&



Skilled perception and action…learned without labels



Labels are are a crutch, a cheat

• The right representations must already be in 
the unlabeled data! 

• Where do you think the labelers get them? 

• We will never learn how to perceive properly 
until we stop relying on labels 

• This is a fundamental weakness



Definitions
• Every 10ms or so we observe a new sensory vector and 

emit a new motor vector; this is the data 

• By prediction I mean a statement at time t about what will 
happen at times >t 

• I assume repeated prediction—at each time t we say 
something about the future 

• If, at each t, we say something only about t+1, then that is 
a one-step prediction 

• Everything else is a multi-step prediction



Examples of multi-step prediction
• Predicting the outcome of a game, like chess or backgammon 

• Predicting what a stock-market index will be at the end of the 
year, or in six months 

• Predicting who will be the next US president 

• Predicting who the US will next go to war against 

• or how many US soldiers will be killed during a president’s term 

• Predicting a sensory observation, in 10 steps, in roughly 10 steps, 
or when something else happens 

• Predicting discounted cumulative reward conditional on behavior



For Example: 
Predicting the 
discounted sum of 
future light-sensor 
readings  
with a time constant of 
8 seconds (80 steps, 
infinite span)

Target:

Target:

7

cache, and 4GB DDR3 RAM. The system garbage collec-
tor was called on every time step to reduce variability. Four
threads were used for the learning code. The total memory
consumption was 400MB. With this setup, the time required
to make and update all 2160 predictions was 55ms, well
within the 100ms duty cycle of the robot. This demonstrates
that it is indeed practical to do large-scale nexting on a robot
with conventional computational resources.

Later, on a newer laptop computer (Intel Core i7, 2.7 Ghz
quad core, 8GB 1600 Mhz DDR3 RAM, 8 threads), with the
same style of predictions and the same features, we found
that we were able to make 6000 predictions in 85ms. This
shows that with more computational resources, the num-
ber of predictions (or the size of the feature vectors) can
be increased proportionally. This strategy for nexting easily
scales to millions of predictions with foreseeable increases
in computing power over the next decade.

4. Accuracy of Learned Predictions

The predictions were learned with substantial accuracy.
For example, consider the eight-second prediction whose
pseudo reward is the third light-sensor reading (Light3).
Notice that there is a bright lamp in the lower-left corner of
the pen (Figure 2, right). On each trip around the pen, the
reading from this light sensor increased to its maximal level
and then fell back to a low level, as shown in the upper por-
tion of Figure 4. If the state features are sufficiently infor-
mative, then the robot should be able to anticipate the rising
and falling of this sensor reading. Also shown in the figure
is the ideal prediction for this time series, Gi

t, computed
retrospectively from the subsequent readings of the light
sensor. Of course no real predictor could achieve this—our
learning algorithms seek to approximate this ‘clairvoyant’
prediction using only the sensory information available in
the current feature vector.

The prediction made by TD(�) is shown in the lower por-
tion of Figure 4, along with the prediction made by the
best static weight vector ✓i⇤ computed retrospectively as
described in Section 2. The key result is that the TD(�) pre-
diction anticipates both the rise and fall of the light. Both
the learned prediction and the best static prediction track
the ideal prediction, though with visible fluctuations.

0 20 40 60 80 100 120
0

20,000

40,000

60,000

0 20 40 60 80 100 120
0,000

20,000

40,000

60,000

0

512

1024

 Prediction 
of best static θTD(λ) 

prediction

Light3
pseudo
reward
(right scale)

Ideal 8s
Light3

prediction
(left scale)

1024

512

0

Seconds

Ideal 8s
Light3 

prediction

Fig. 4. Predictions of the Light3 pseudo reward at the eight-
second timescale. The upper graph shows the Light3 sensor read-
ing spiking and saturating on three circuits around the pen and
the corresponding ideal prediction (computed afterwards from the
future pseudo rewards). Note that the ideal prediction shows the
signature of nexting—a substantial increase prior to the spikes
in pseudo reward. The lower graph shows the same ideal predic-
tion compared to the prediction of the TD(�) algorithm and of
the prediction of the best static weight vector. These feature-based
predictions are more variable, but substantially track the ideal.

                0

60,000

15 seconds near the time of Light3 saturation

Ideal 8s Light3
prediction

Prediction 
of best static !

TD(") prediction

Onset of 
Light3 saturation

Average 
over 100 
circuits 
around 
the pen

Fig. 5. Light3 predictions (like those in the lower portion of Fig-
ure 4) averaged over 100 circuits around the pen and aligned at the
onset of Light3 saturation.

Cumuland 
(pseudo-
reward):
Light3 data

weights



Predictive span
• The span of a prediction is the maximum number of 

time steps that might elapse between making a 
prediction and completely observing the outcome, 
or target 

• One-step predictions have unit span 

• Multi-step predictions have span > 1 

• We are particularly interested in predictions that 
can be learned with computational complexity that 
is independent of span



Do we need to think about 
multi-step predictions?

• Can’t we just learn one-step predictions, and then 
iterate them (compose them) to produce multi-step 
predictions when needed? 

• Can’t we just think of the multi-step as one big step, 
and then use one-step methods? 

• No, we really can’t (and shouldn’t want to)



Can’t we learn one-step predictions, and 
iterate them to get multi-step predictions?
• Yes, sort of, but ultimately No, very much No 

• Yes in the sense that if we have learned one-step predictions that 
are exactly correct, then they are informationally sufficient to make 
all multi-step predictions exactly correct; we would not have to learn 
cached answers to each one individually, we could just compute 
them on the fly 

• However, computing the multi-step predictions involves a branching 
process (if the world is stochastic or we have action choices); the 
complexity of making the prediction is exponential in the span 

• If there is any error in the one-step predictions, then the error will 
propagate and expand exponentially with span; the multistep 
predictions will be poor approximations, much poorer than if they 
were learned directly



Can’t we just use our familiar 
one-step learning methods?

• Can’t we just wait until the target is known, then use a one-step 
method? (reduce to input-output pairs) 

• E.g., wait until the end of the game, then regress to the outcome 

• No, not really; there are significant computational costs to this 

• memory is O(span) 

• computation is poorly distributed over time 

• These can be avoided with learning methods specialized for multi-step 

• Also, sometimes the target is never known (off-policy) 

• We should not ignore these things; they are not nuisances, they are 
clues, hints from nature



Every prediction has both a 
question and an answer

• Q: How much rain will fall in the next 24 hours? A: 0.5 centimeters 

• Q: Will i win this chess game? A: with Probability 0.9 

• Q: What will the dow jones index be at the end of the year? A: 18,000 

• Q:What will be the discounted sum of rewards from here forward?  
A: 5.7 (or whatever the value of the state is) 

• The question describes the procedure for calculating the target 

• The answer is the expected value of the target (say) 

• The answer process is familiar; it might be a deep/neural network 

• The question process is less familiar, possibly more important



Generalized value functions (GVFs)
• A particular class of predictive questions 

• Inspired by the value functions of optimal control/RL 

• Whose answers can be learned in a 
computationally efficient way 

• independent of span and taking advantage of the 
state property (approximate Markov) 

• Linked to planning via dynamic programming and 
‘option’ models



Gt =
⇡(At |St)
µ(At |St)

⇣
Rt+1 + �(St+1)Gt+1

⌘

The question part of a GVF
• Given 

• a policy 

• a signal to be added up, the cumuland 

• a termination or discounting condition 

• The target is the sum of the cumuland signal up until 
termination, if the policy is followed:

behavior  
policy

⇡ : A⇥ S ! [0, 1]

Rt 2 <

� : S ! [0, 1]

Rt 2 <

� : S ! [0, 1]

⇡ : A⇥ S ! [0, 1]



The answer part of a GVF 
(determines the nature of the approximation)

• Given: 

• a parameterization (e.g., the features of a linear 
approximation, the structure of a deep net) 

• a bootstrapping function 

• an interest function 

• a source of data (e.g., behavior policy) 

• Find    to minimize:

where:

� : S ! [0, 1]

i : S ! <+

G�
t = Rt+1 + �(St+1)

⇣
(1��(St+1))v̂(St+1,✓) + �(St+1)G

�
t+1

⌘

v̂ : S⇥<n ! <

µ : A⇥ S ! [0, 1]

� : S ! [0, 1]

i : S ! <+

G�
t = Rt+1 + �(St+1)

⇣
(1��(St+1))v̂(St+1,✓) + �(St+1)G

�
t+1

⌘
G�
t = Rt+1 + �(St+1)

⇣
(1��(St+1))v̂(St+1,✓) + �(St+1)G

�
t+1

⌘

X

s2S
dµ(s)i(s)

⇣
v̂(s,✓)� E⇡

h
Gt

�|St=s
i ⌘2✓



/ 6517



predictions 
x 6000

sparse binary 
features x 3200

(tile coding)

Massive real-time prediction learning
Up to one billion weight updates/second

continuous observation data x 69

Non-linear 
sparse re-coder 
(e.g., tile coding)

sensorimotor
data

...

predictions
PSR

fea-
tures



The power of policy conditioning

Would a 
person say 

that's a battery 
charger?

Would my  
try-to-plugin 

procedure 
succeed?



Multi-step predictions represent more 
interesting perceptual concepts

• They include physical things, like distance and weight 

• But also higher-level, more abstract and cognitive 
things, like functions and opportunities, possibilities 

• a pitch I can hit, a girl I can kiss, a thing I can sit on, 
a way to get my email… 

• cf. correlations between simultaneous signals 

• cf. information theory, compression 

• cf. invariances



Algorithmic issues  
in multi-step prediction

• eligibility traces 

• temporal-difference learning 

• off-policy learning and importance sampling 

• a very challenging technical problem with new 
methods still being proposed 

• supporting composition and planning



An example of using the 
predictions for control



In conclusion, why do multi-
step predictions matter?

• They are another source of data for perceptual learning 

• from sensory or sensorimotor (robot) streams 

• these are potentially huge and scalable 

• They yield higher-level concepts than do one-step 
predictions 

• Their questions can be represented in the machine 

• Different algorithms are needed to learn them efficiently 
in both data and computation



Thank you for your attention

and thanks to 

Rupam Mahmood, Adam White, Joseph Modayil,  
Harm van Seijen, Doina Precup, Hado van Hasselt


