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Outline
• “Planning” is AI’s way of achieving cognition, reason, thought 

• In reinforcement learning, planning is naturally viewed as  
value iteration with a learned model 

• I see 5 big challenges to extending value iteration to the goals of AI  
(while keeping it simple, general, scalable, and efficient) 

• For 4 of them—average reward, partial observability, temporal 
abstraction, and function approximation—the way forward seems clear 

• For the 5th challenge, stochastic transitions with approximation, the 
way forward remains unclear



Planning is any way of using a model of the world + computation (not experience) 
to improve a decision-making policy or value function



It’s common to view intelligence as having 2 parts

1.  A fast, reactive part giving us (learned) reflexes and intuitions

2.  A slower, deliberative part that makes better choices

• I think of them as the reactive foreground and deliberative background of the mind 

• In psychology, Daniel Kahneman calls them System 1 and System 2   
in his NYT best-selling book Thinking Fast and Slow (2013) 

• In robotics, there is a controller and a trajectory planner



Model-based Reinforcement Learning

• Setting: An agent interacts with a world in discrete time steps,  
emitting actions, receiving states and rewards 

• Learning: The agent learns, from experience: 

• a reactive policy, mapping states to actions 

• a value function, mapping states to predictions of future reward 

• a model, mapping states and actions to expected rewards and 
(distributions over) next states 

• Planning: The agent uses model and computation (and no new data)  
to improve the reactive policy and value function
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Planning by value iteration
In which planning is using a model of the world to compute 
state values (estimates of future total reward from each state)

• All the time, when you have time, select a state  (search control) 
and perform a backup at : 

 

• Not that different from tree search, MCTS, even A* 

• Well suited to RL, and typical of many planning methods
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5 extensions to make value iteration  
more realistic and powerful 

5 major branch points in research direction 

5 challenges 

5 tests of your ambition and courage

The Five
(outline of the rest of the talk) 1. Average reward  

moving beyond discounting and episodes

2. Partial observability  
moving beyond fully observable Markov state

3. Temporal abstraction, options  
resisting the siren call of the one-step trap

4. Function approximation  
embracing the demands of the big world perspective

5. Stochastic transitions  
moving beyond deterministic worlds

All while remaining simple, scalable, general, and computationally efficient



1. Average reward  
    moving beyond discounting and episodes 

• Discounting is not compatible  
with approximation and control 

• Really, there are no episodes 

• The agent should maximize  
the average reward per-step 

• It is ‘easy’ to do

Conventional value iteration: 

 

Becomes differential value iteration (Wan, Naik & Sutton, 2021): 
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2. Partial observability  
    moving beyond fully observable Markov state

• Really, the state is not given,  
only an observation  

• The agent must create state from 
observations and actions 

 

• State update is part of the fast part 
of the intelligence 

• The created state is not Markov 
for the env, but it is for the model

Ot
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Conventional agent-environment interaction:
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Interaction with observations:

State update reduces the new case to the old!

[Things in red are changed or new]



3. Temporal abstraction, options  
    resisting the siren call of the one-step trap 
• Life is lived one step at a time 

• But it is planned at higher levels 

• Our models, our knowledge, is about  
large-scale purposive dynamics 

• conditional not on single actions 
• but on sustained, ways of acting 
• knowledge is about options 

• Option = policy + stopping condition 

• Option model = just like before, but 
with a temporally abstract semantics

Conventional model: 

Becomes an option model: 

Value iteration is unchanged! 
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The one-step trap:
Thinking that one-step predictions are sufficient

• Thinking that we can predict the state and observation one step later 
• with longer-term predictions made by iterating the model at the time 

the prediction is made 

• In theory this works, but not in practice 
• iteration amplifies even small errors in the one-step predictions 
• longer-term predictions are policy dependent, and finding the 

policies involves branching and concomitant exponential complexity 

• We need direct models of many particular policies (options, jumps) 

• POMDP and related methods can never escape the trap because they 
use state update in backups, and state update is inherently one step



Options must still be discovered, their models learned

• One way to discover options is for the agent to pose subproblems for itself 

• and then learn optimal policies and stopping conditions 
(this is a normal RL learning problem) 

• Then, given the options, their models can be learned 

• by Monte Carlo methods (from the start and stop states),   
but only on-policy 

• by modern TD methods — online, off-policy, and incrementally

Self-supervised 
prediction learning

Temporal-difference 
prediction learning



4. Function approximation  
    embracing the demands of the big world perspective 

• The environment is huge! 

• Much bigger than the agent 

• Even a single state is too big 

• the state of the environment includes 
the positions of all atoms…  
the thoughts of all people… 

• The dynamics of the world is roughly 
the square of the state’s complexity! 

• Still, we have function approximation…
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4. Function approximation  
    embracing the demands of the big world perspective 

Conventional value iteration: 

 

Becomes approximate value iteration:
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• This operation is called a backup of state  

• Remember, many states must be backed up, perhaps many times (two outer loops in classical VI) 

• To be feasible and effective, the states backed up must be carefully selected (search control) 

• There are also two loops inside each backup 

• The  is a problem if there are many options, but it can be done incrementally 
(keep track of best-so-far, check selected new options to see if they are better) 

• The  is a problem if the world is stochastic.  
Can the expected action value be computed efficiently??
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5. Stochastic transitions  
    moving beyond deterministic worlds 

• The expected action value must be computed 
for every backup: 

 

• It is cheap if the world is deterministic 

• But really the environment is very stochastic; 
there are lots of next states  

• If the model returns samples of the next state, 
then we would be pretty good (sample model) 

• There is a trick if the value function is linear 
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Questions
Q. Does the trick (expectation models + linear value functions) work with all the other  
     things (options, average reward, state update)? 

A. yes, everything goes through 

Q. Doesn’t the restriction to linear value functions mean that we have failed to achieve  
     generality and scalability? 

A. not entirely clear, but i think maybe not; 
    everything can be linear with the right state-feature representation 

Q. Do we know how to learn sample models with options?  

A. definitely not 

Q. Can we make a sample model work at all?  

A. not clear



My best guess at a full solution to planning…
• Expectation model + linear value function + state-feature creation 

• The model is heavily annotated with meta data — not just the expectations, 
but certainties and usefulness-es 

• remember we will need usefulness measures for search control anyway 

• Useful option models are rare; the agent searches for them 

• Learning a model is not like filling in a table, or estimating known quantities; 
it is more like searching for rare gold 

• Where the gold is options whose approximate models are useful 

• Options provide semantics, making the learning problem well defined,  
but useful options and state features must be found by experimentation



 Final perspective

• Planning is subtle and surprisingly unsolved if there are stochastic dynamics 

• There are grand research-strategy decision points in planning;  
these are important and we should be aware of them 

• You need not choose as I have chosen, but you must choose 

• This is a grand quest! Automated discovery and learning of knowledge! 

• We should be ambitious in our vision, incremental in our progress
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