
Gaps in the Foundations
of Planning with Approximation

Rich Sutton

with particular thanks to Joseph Modayil, Yi Wan, Abhishek Naik, M. Zaheer,
Katya Kudashkina, Martha Steenstrup

R
A I
L

&

Outline
• “Planning” is AI’s way of achieving cognition, reason, thought

• In reinforcement learning, planning is naturally viewed as
value iteration with a learned model

• I see 5 big challenges to extending value iteration to the goals of AI
(while keeping it simple, general, scalable, and efficient)

• For 4 of them—average reward, partial observability, temporal
abstraction, and function approximation—the way forward seems clear

• For the 5th challenge, stochastic transitions with approximation, the
way forward remains unclear

Planning is any way of using a model of the world + computation (not experience)
to improve a decision-making policy or value function

It’s common to view intelligence as having 2 parts

1. A fast, reactive part giving us (learned) reflexes and intuitions

2. A slower, deliberative part that makes better choices

• I think of them as the reactive foreground and deliberative background of the mind

• In psychology, Daniel Kahneman calls them System 1 and System 2
in his NYT best-selling book Thinking Fast and Slow (2013)

• In robotics, there is a controller and a trajectory planner

Model-based Reinforcement Learning

• Setting: An agent interacts with a world in discrete time steps,
emitting actions, receiving states and rewards

• Learning: The agent learns, from experience:

• a reactive policy, mapping states to actions

• a value function, mapping states to predictions of future reward

• a model, mapping states and actions to expected rewards and
(distributions over) next states

• Planning: The agent uses model and computation (and no new data)
to improve the reactive policy and value function

RL
algorithm

world

actionstate reward

world
model

Dyna
swap

planning

value/policy

experiencemodel

model
learning

acting

direct
RL

Dyna, Sutton 1990

Planning by value iteration
In which planning is using a model of the world to compute
state values (estimates of future total reward from each state)

• All the time, when you have time, select a state (search control)
and perform a backup at :

• Not that different from tree search, MCTS, even A*

• Well suited to RL, and typical of many planning methods

s ∈ "
s

V(s) ← max
a [̂r(s, a) + γ∑

s′

̂p(s′ |s, a)V(s′)]
probability of transition
to when taking in s′ a s

s

s0
r

max
a

p

̂r

̂p

Model
̂r, ̂p

state s
action a

prob distr over
next state s′

expected reward ̂r

expected reward
when taking in a s

model

estimated value
of state s possible action

in state s

discount rate

possible
next state

5 extensions to make value iteration
more realistic and powerful

5 major branch points in research direction

5 challenges

5 tests of your ambition and courage

The Five
(outline of the rest of the talk) 1. Average reward  

moving beyond discounting and episodes

2. Partial observability  
moving beyond fully observable Markov state

3. Temporal abstraction, options  
resisting the siren call of the one-step trap

4. Function approximation  
embracing the demands of the big world perspective

5. Stochastic transitions  
moving beyond deterministic worlds

All while remaining simple, scalable, general, and computationally efficient

1. Average reward  
 moving beyond discounting and episodes

• Discounting is not compatible
with approximation and control

• Really, there are no episodes

• The agent should maximize
the average reward per-step

• It is ‘easy’ to do

Conventional value iteration:

Becomes differential value iteration (Wan, Naik & Sutton, 2021):

with

V(s) ← max
a [̂r(s, a) + γ∑

s′

̂p(s′ |s, a)V(s′)]

V(s) ← max
a [̂r(s, a) −R̄ +∑

s′

̂p(s′ |s, a)V(s′)]
R̄ ← max

a [̂r(s, a) + ∑
s′

̂p(s′ |s, a)V(s′) − V(s)]

discount-rate
parameter

reward-rate
estimate

[Things in red are changed or new]

R A

Env

Agent

O

u SA
rest of

R A

Env

Agent

S

2. Partial observability  
 moving beyond fully observable Markov state

• Really, the state is not given,
only an observation

• The agent must create state from
observations and actions

• State update is part of the fast part
of the intelligence

• The created state is not Markov
for the env, but it is for the model

Ot

St = u(St−1, At−1, Ot)

Conventional agent-environment interaction:

state-update
function

new
state last

action
new
observation

Interaction with observations:

State update reduces the new case to the old!

[Things in red are changed or new]

3. Temporal abstraction, options  
 resisting the siren call of the one-step trap
• Life is lived one step at a time

• But it is planned at higher levels

• Our models, our knowledge, is about
large-scale purposive dynamics

• conditional not on single actions
• but on sustained, ways of acting
• knowledge is about options

• Option = policy + stopping condition

• Option model = just like before, but
with a temporally abstract semantics

Conventional model:

Becomes an option model:

Value iteration is unchanged!

V(s) ← max
o [̂r(s, o) + ∑

s′

̂p(s′ |s, o)V(s′)]

Model
̂r, ̂p

starting state s
action a

prob distr over
next state s′

expected reward ̂r

Model
̂r, ̂p

starting state s
option o

prob distr over
stopping state s′

expected reward summed until stoppinĝr

possible option
in state s

The one-step trap:
Thinking that one-step predictions are sufficient

• Thinking that we can predict the state and observation one step later
• with longer-term predictions made by iterating the model at the time

the prediction is made

• In theory this works, but not in practice
• iteration amplifies even small errors in the one-step predictions
• longer-term predictions are policy dependent, and finding the

policies involves branching and concomitant exponential complexity

• We need direct models of many particular policies (options, jumps)

• POMDP and related methods can never escape the trap because they
use state update in backups, and state update is inherently one step

Options must still be discovered, their models learned

• One way to discover options is for the agent to pose subproblems for itself

• and then learn optimal policies and stopping conditions
(this is a normal RL learning problem)

• Then, given the options, their models can be learned

• by Monte Carlo methods (from the start and stop states),
but only on-policy

• by modern TD methods — online, off-policy, and incrementally

Self-supervised
prediction learning

Temporal-difference
prediction learning

4. Function approximation  
 embracing the demands of the big world perspective

• The environment is huge!

• Much bigger than the agent

• Even a single state is too big

• the state of the environment includes
the positions of all atoms…
the thoughts of all people…

• The dynamics of the world is roughly
the square of the state’s complexity!

• Still, we have function approximation…
 becomes

model also becomes parametric
V(s) ̂v(s, w)

̂r, ̂p

4. Function approximation  
 embracing the demands of the big world perspective

Conventional value iteration:

Becomes approximate value iteration:

V(s) ← max
a [̂r(s, a) + γ∑

s′

̂p(s′ |s, a)V(s′)]
 becomes

model also becomes parametric
V(s) ̂v(s, w)

̂r, ̂p

s

s0
r

max
a

p

̂r

̂p

model parameter weight vector of
function approximator

step-size parameter

“backed-up value”
of state-action pair

gradient vector

w ← w + α [max
a

b(s, a, w) − ̂v(s, w)]∇w ̂v(s, w)

b(s, a, w) = ̂rθ(s, a) + γ∑
s′

̂pθ(s′ |s, a) ̂v(s, w)

s

s0
r

max
a

p

̂r

̂p

• This operation is called a backup of state

• Remember, many states must be backed up, perhaps many times (two outer loops in classical VI)

• To be feasible and effective, the states backed up must be carefully selected (search control)

• There are also two loops inside each backup

• The is a problem if there are many options, but it can be done incrementally
(keep track of best-so-far, check selected new options to see if they are better)

• The is a problem if the world is stochastic.
Can the expected action value be computed efficiently??

s

max

∑

Consider the computational expense

w ← w + α [max
a

b(s, a, w) − ̂v(s, w)]∇w ̂v(s, w)

b(s, a, w) = ̂rθ(s, a) + γ∑
s′

̂pθ(s′ |s, a) ̂v(s, w)b(s, a, w) = ̂rθ(s, a) + γ∑
s′

̂pθ(s′ |s, a) ̂v(s, w)

5. Stochastic transitions  
 moving beyond deterministic worlds

• The expected action value must be computed
for every backup:

• It is cheap if the world is deterministic

• But really the environment is very stochastic;
there are lots of next states

• If the model returns samples of the next state,
then we would be pretty good (sample model)

• There is a trick if the value function is linear

∑
s′

̂pθ(s′ |s, a) ̂v(s′ , w)

s′

̂v(s, w) = s⊤w

state feature vector

Conventional model:

becomes an expectation model:

The computation of the expected action value is now cheap and exact:

∑
s′

̂pθ(s′ |s, a) ̂v(s′ , w) = ∑
s′

̂pθ(s′ |s, a) s′
⊤w

= (∑
s′

̂pθ(s′ |s, a) s′)
⊤
w

=)[st+1 ∣ st = s, At = a]⊤w
≐ s̄(s, a)⊤w

Model
̂r, ̂p

starting state s
action a

prob distr over
next state s′

expected reward ̂r

Model
̂r, s̄

starting state feature vector s
action a

expected next state s̄
expected reward ̂r

transpose, indicating
inner product

the expectation model
gives us this

Questions
Q. Does the trick (expectation models + linear value functions) work with all the other
 things (options, average reward, state update)?

A. yes, everything goes through

Q. Doesn’t the restriction to linear value functions mean that we have failed to achieve
 generality and scalability?

A. not entirely clear, but i think maybe not;
 everything can be linear with the right state-feature representation

Q. Do we know how to learn sample models with options?

A. definitely not

Q. Can we make a sample model work at all?

A. not clear

My best guess at a full solution to planning…
• Expectation model + linear value function + state-feature creation

• The model is heavily annotated with meta data — not just the expectations,
but certainties and usefulness-es

• remember we will need usefulness measures for search control anyway

• Useful option models are rare; the agent searches for them

• Learning a model is not like filling in a table, or estimating known quantities;
it is more like searching for rare gold

• Where the gold is options whose approximate models are useful

• Options provide semantics, making the learning problem well defined,
but useful options and state features must be found by experimentation

 Final perspective

• Planning is subtle and surprisingly unsolved if there are stochastic dynamics

• There are grand research-strategy decision points in planning;
these are important and we should be aware of them

• You need not choose as I have chosen, but you must choose

• This is a grand quest! Automated discovery and learning of knowledge!

• We should be ambitious in our vision, incremental in our progress

Thank you for your attention

with special thanks to Joseph Modayil, Yi Wan, Abhishek Naik, M. Zaheer,
Katya Kudashkina, Martha Steenstrup

