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The problem

• Learning to predict the outcome of a way 
of behaving

• from fragments of its execution

• in a practical, scalable way

➡Off-policy TD learning with linear function 
approximation
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What is 
temporal-difference learning?

• The most important and distinctive idea in 
reinforcement learning

• A way of learning to predict, 
from changes in your predictions, 
without waiting for the final outcome

• A way of taking advantage of state 
in multi-step prediction problems

• Learning a guess from a guess



Examples of TD learning
opportunities

• Learning to evaluate backgammon positions 
from changes in evaluation within a game

• Learning where your tennis opponent will 
hit the ball from his approach

• Learning what features of a market indicate 
that it will have a major decline

• Learning to recognize your friend’s face in a 
crowd



Function approximation

• TD learning is sometimes done in a table-
lookup context - where every state is 
distinct and treated totally separately

• But really, to be powerful, we must 
generalize between states

• The same state never occurs twice

For example, in Computer Go, 
we use 106 parameters to learn about 10170 positions



Advantages of TD methods 
for prediction

1. Data efficient 
Learn much faster on Markov problems

2. Cheap to implement
Require less memory, peak computation

3. Able to learn from incomplete sequences
In particular, able to learn off-policy



Off-policy learning

• Learning about a policy different than the 
policy being used to generate actions

• Most often used to learn optimal 
behaviour from a given data set, or from 
more exploratory behaviour

• Key to ambitious theories of knowledge 
and perception as continual prediction 
about the outcomes of many options
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Value-function approximation
from sample trajectories
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for state s



Value-function approximation
from sample trajectories
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From terminal outcomes to 
per-step rewards

1

state trajectory



From terminal outcomes to 
per-step rewards

1

state trajectory
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rewards
target values (returns)

= sum of future
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TD methods operate on 
individual transitions

• True values:
1 2 1 -1 2 0 10 1

Training set is now a bag of transitions
Select from them i.i.d.

(independently, identically distributed)

trajectories transitions

Sample transition: (s, r, s�) or (�, r, ��)

TD(0) algorithm:
⇤ � ⇤ + �⇥⌅

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅



P and d 
are linked

bs - expected reward given s
Pss’ - prob of next state s’ given s

ds - distribution of first state s

TD methods operate on 
individual transitions

• True values:
1 2 1 -1 2 0 10 1

Training set is now a bag of transitions
Select from them i.i.d.

(independently, identically distributed)

transitions

Sample transition: (s, r, s�) or (�, r, ��)

TD(0) algorithm:
⇤ � ⇤ + �⇥⌅

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅



Off-policy training

• True values:
1 2

1

-12 0 10

1

ds 
bs 
Pss’ 

trajectories transitions

P and d are no longer 
linked

TD(0) may diverge!



Baird’s counter-example
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• P and d are not linked

• d is all states with equal probability

• P is according to this Markov chain:

r = 0
on all transitions



TD can diverge: 
Baird’s counter-example
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TD(0) can diverge: 
A simple example

TD update:

TD fixpoint:

� 2�
r=1

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

= 0 + 2⇤ � ⇤

= ⇤

�⇤ = �⇥⌅

= �⇤

�� = 0

Diverges!



Previous attempts to solve 
the off-policy problem

• Importance sampling

• With recognizers

• Least-squares methods, LSTD, LSPI, iLSTD

• Averagers

• Residual gradient methods



Desiderata:
We want a TD algorithm that

• Bootstraps (genuine TD)

• Works with linear function approximation
(stable, reliably convergent)

• Is simple, like linear TD — O(n)

• Learns fast, like linear TD

• Can learn off-policy (arbitrary P and d)

• Learns from online causal trajectories 
(no repeat sampling from the same state)
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Gradient-descent learning 
methods - the recipe

J(�)

��J(�)

�

⇥ ⇥ ⇥ � �⇤�Jt(⇥)

⇥ ⇥ ⇥ � �⇤�Jt(⇥)

1. Pick an objective function       , a 
parameterized function to be minimized

2. Use calculus to analytically compute the 
gradient 

3. Find a “sample gradient”              that you 
can sample on every time step and whose 
expected value equals the gradient

4. Take small steps in    proportional to the 
sample gradient:



⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

Conventional TD is not the 
gradient of anything

�⇤ = �⇥⌅

⇧2J

⇧⇤j⇧⇤i
=

⇧(⇥⌅i)
⇧⇤j

= (�⌅�
j � ⌅j)⌅i

⇧2J

⇧⇤i⇧⇤j
=

⇧(⇥⌅j)
⇧⇤i

= (�⌅�
i � ⌅i)⌅j

⌅J

⌅⇥i
= �⇤iAssume there is a J such that:

Then look at the second derivative:

⇥2J

⇥�j⇥�i
�= ⇥2J

⇥�i⇥�j

TD(0) algorithm:

}
Real 2nd derivatives must be symmetric

Contradiction!
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Gradient descent for TD: 
What should the objective function be?

• Close to the true values?

• Or close to satisfying the Bellman equation?

where T is the Bellman operator defined by
V = r + �PV

= TV

Mean-Square
Error

MSE(�) =
�

s

ds (V�(s)� V (s))2

= ⇥ V� � V ⇥2
D

Mean-Square
Bellman Error MSBE(�) = ⇥ V� � TV� ⇥2

D

True value
function



Value function geometry
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The space spanned by the feature vectors, 
weighted by the state visitation distribution

T takes you outside 
the space

Π projects you back 
into it

D = diag(d)

V� = �TV�

Is the TD fix-point

Better objective fn?

Previous work on 
gradient methods for TD 

minimized this objective fn
(Baird 1995, 1999)

Mean Square Projected Bellman Error (MSPBE)



But if you minimize the 
expected TD error:
                       , 
then you get the solution

Even in the tabular case (no FA)   

Backward-bootstrapping example (1) 
(Dayan 1992)

Clearly, the true values are  

V (A) = 0.5
V (B) = 1

J(⇥) = E[�2]

Fast gradient-descent methods for temporal-difference learning with linear function approximation
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Figure 1. Geometric relationships between the square roots of the
two Bellman-error objective functions.

All the algorithms mentioned above find or converge to a
fixpoint of the composed projection and Bellman operators,
that is to a value of ⇤ such that

V� = �TV�. (4)

We call this value of ⇤ the TD fixpoint. In the current work,
we take as our objective the deviation from this fixpoint.
That is, we use as our objective function the mean-square
projected Bellman error:

MSPBE(⇤) = ⇥ V� ��TV� ⇥2
D . (5)

Figure 1 shows the relationship between this and the
MSBE objective function geometrically. Although many
previous works have highlighted the goal of achieving the
TD fixpoint (4), the present work seems to be the first to
focus on the MSPBE as an objective function to be mini-
mized (but see Antos, Szepesvári and Munos 2008, p. 100).
Further insight into the difference between the two Bellman
error objective functions can be gained by considering the
episodic example in Figure 2.

Finally, we close this discussion of objective functions by
giving the function used to derive the original GTD algo-
rithm. This objective function does not seem to have a
ready geometric interpretation. Here we call it the norm
of the expected TD update:

NEU(⇤) = E[⇥⌅]⇥ E[⇥⌅] . (6)

4. Derivation of the new algorithms
In this section we derive two new algorithms as stochastic
gradient descent in the projected Bellman error objective
(5). We first establish some relationships between the rele-
vant expectations and vector-matrix quantities:

E
�
⌅⌅⇥

⇥
=

⇧

s

ds⌅s⌅
⇥
s = ⇥⇥D⇥,

E[⇥⌅] =
⇧

s

ds⌅s

⇤
Rs + �

⇧

s0

Pss0V�(s�)� V�(s)

⌅

= ⇥⇥D(TV� � V�),

1
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TD-fixpoint solution Residual-gradient solution With function approx...

Figure 2. Backward-bootstrapping example. In the left and mid-
dle panels, episodes begin in state A then transition either to B or
to C with equal probability before proceeding to termination with
a reward of 1 or 0 (all other transitions have zero reward). The ver-
tical positions of the states represent their values according to the
TD-fixpoint solution (left panel) and according to the residual-
gradient (RG) solution (middle panel; Baird 1995, 1999). State
A, for example, has height midway between 0 and 1 in both so-
lutions, corresponding to its correct value of 1

2 (because episodes
starting in A end half the time with a total reward of 1 and half
the time with a total reward of 0, and � = 1). In the TD solution,
states B and C are given values of 1 and 0 respectively, whereas
in the RG solution they are given the values 3

4 and 1
4 . The 1,0

values are correct in that these states are always followed by these
rewards, but they result in large TD errors, of ⇥ = ± 1

2 , on transi-
tions out of A. The RG solution has smaller TD errors, of ⇥ = ± 1

4 ,
on all of its transitions, resulting in a smaller mean-square TD er-
ror per episode of 1

4

2 ⇥ 2 = 1
8 as compared to 1

2

2
= 1

4 for the
TD solution. That is, the RG solution splits the TD error over
two transitions to minimize squared TD error overall. The RG so-
lution is also sometimes described as backwards bootstrapping—
making the value of a state look like the value of the state that
preceded it as well as the state that followed it. It has long been
recognized that backwards bootstrapping is to be avoided (Sutton
1988; Dayan 1992) but the RG algorithm has remained of inter-
est because it is a gradient-descent method and thus guaranteed to
converge (whereas TD(⇤) converges only on-policy) and because
it has a “two sample version” that minimizes the MSBE rather
than the squared TD error. The key difference here is that, from A,
the squared TD error tends to be large but the expected TD error
(the Bellman error) tends to be zero (as long as the B and C val-
ues are distributed symmetrically around 1

2 ). The TD solution 1,0
is in fact the minimum MSBE solution on this problem, and this
has led to the widespread belief that the MSBE solves the prob-
lem of backwards bootstrapping. However, this is not the case in
general; once function approximation is introduced, the MSBE
and MSPBE solutions differ, and the 3

4 , 14 solution may reappear.
An example of this is shown in the right panel, where the previ-
ous state A is split into two states, A1 and A2, that share the same
feature representation; they look the same and must be given the
same approximate value. Trajectories start in one of the two A
states each with 50% probability, then proceed deterministically
either to B and 1, or to C and 0. From the observable data, this
example looks just like the previous, except now taking multiple
samples is no help because the system is deterministic, and they
will all be the same. Now the 3

4 , 14 solution minimizes not just the
squared TD error, but the MSBE as well; only the MSPBE crite-
rion puts the minimum at the 1, 0 solution. The MSBE objective
causes function approximation resources to be expended trying
to reduce the Bellman error associated with A1 and A2, whereas
the MSPBE objective takes into account that their approximated
values will ultimately be projected onto the same value function.

C

B

V (C) = 0
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Backward-bootstrapping example (2)

The two ‘A’ states look the 
same, they share a single 
feature and must be given the 
same approximate value

The example appears just like 
the previous, but now the 
minimum mean-squared 
Bellman error solution is

1
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TD-fixpoint solution Residual-gradient solution With function approx...
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Three new algorithms

• GTD, the original gradient TD algorithm 
(Sutton, Szepevari & Maei, 2008)

• GTD-2, a second-generation GTD

• TDC, TD with gradient correction

• (also GQ(λ) and Greedy-GQ)



Derivation of the TDC algorithm
s

r�⇥s�

� ��

This is the trick!
            is a second 

set of weights
w � ⇥n

�⌅ = �1

2
�r�J(⌅) = �1
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• on each transition

• update two parameters

• where, as usual

The complete TD with gradient 
correction (TDC) algorithm

⌅ ⇥ ⌅ + �⇤⇧� �⇥⇧�
�
⇧⇥w

⇥

w ⇥ w + �(⇥ � ⇤�w)⇤

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

s
r�⇥s�

� ��

TD(0) with gradient
correction



• on each transition

• update two parameters

• where, as usual

The complete TD with gradient 
correction (TDC) algorithm

⌅ ⇥ ⌅ + �⇤⇧� �⇥⇧�
�
⇧⇥w

⇥

w ⇥ w + �(⇥ � ⇤�w)⇤

⇥ = r + �⇤⇥⌅� � ⇤⇥⌅

s
r�⇥s�

� ��

estimate of the 
TD error (  ) for
the current state   

�
�
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Stability and convergence

There exists a projected-Bellman-error 
objective function

such that

which guarantees convergence to 
(under step-size conditions)

J(θ) = Vθ − ΠTVθ D

2

E Δθ[ ] = −α∇θ J(θ)

J(θ) = 0

vector of values, one per state

generalized Bellman 
operator

projection back 
into the space of 
representable 
functions



Convergence theorems

• For arbitrary P and d

• All algorithms converge w.p.1 to the TD fix-point:

• for GTD and GTD-2

• for TDC

� = ⇥ �⇥ 0

E[�⇥] �⇥ 0

� =

⇥

⇤
�! 0, ⇤ > max(0,⌅

max

)



A little more theory
�⇤ / ⇥⌅ =

�
r + �⇤>⌅0 � ⇤>⌅

�
⌅

= ⇤>(�⌅0 � ⌅)⌅+ r⌅

= ⌅ (�⌅0 � ⌅)
>
⇤ + r⌅

E [�⇤] / �E
h
⌅ (⌅� �⌅0)

>
i
⇤ + E [r⌅]

E [�⇤] / �A⇤ + b
convergent if
A is pos. def.

therefore, at
the TD fixpoint:

C = E
⇥
��>⇤

covariance
matrix

�1

2
r✓MSPBE = �A>C�1(A� � b)

always pos. def.

A�⇤ = b

�⇤ = A�1b
LSTD computes this directly
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Random walk problem (on-policy)

A B C D E
100000

start

3 different feature representations. 
• 5 tabular features
• 5 inverted-tabular features
• 3 features (genuine FA)



Boyan chain problem (on-policy)
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Figure 1: The two experimental domains: (a) Boyan’s chain example and (b) mountain car.
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Figure 2: Performance of various algorithms in Boyan’s chain problem with 6 different lambda
values. Each line represents the averaged error over last 100 episodes after 100, 200, and 1000
episodes respectively. Results are also averaged over 30 trials.

5.1 Boyan Chain Problem

The first domain we consider is the Boyan chain problem. Figure 1(a) shows the Markov chain
together with the feature vectors corresponding to each state. This is an episodic task where the
discount factor � is one. The chain starts in state 13 and finishes in state 0. For all states s > 2, there
exists an equal probability of ending up in (s � 1) and (s � 2). The reward is -3 for all transitions
except from state 2 to 1 and state 1 to 0, where the rewards are -2 and 0, respectively.

Figure 2 shows the comparative results. The horizontal axis corresponds to different ⇥ values,
while the vertical axis illustrates the RMS error in a log scale averaged over all states uniformly.
Note that in this domain, the optimum solution is in the space spanned by the feature vectors:
�� = (�24,�16,�8, 0)T . Each line shows the averaged error over last 100 episodes after 100,
200, and 1000 episodes over the same set of observed trajectories based on 30 trials. As expected,
LSTD(⇥) requires the least amount of data, obtaining a low average error after only 100 episodes.
With only 200 episodes, though, the iLSTD(⇥) methods are performing as well as LSTD(⇥), and
dramatically outperforming TD(⇥). Finally, notice that iLSTD-Greedy(⇥) despite its lack of asymp-
totic guarantee, is actually performing slightly better than iLSTD-Random(⇥) for all cases of ⇥.
Although ⇥ did not play a significant role for LSTD(⇥) which matches the observation of Boyan
[Boyan, 1999], ⇥ > 0 does show an improvement in performance for the iLSTD(⇥) methods.

Table 1 shows the total averaged per-step CPU time for each method. For all methods sparse ma-
trix optimizations were utilized and LSTD used the efficient incremental inverse implementation.
Although TD(⇥) is the fastest method, the overall difference between the timings in this domain is
very small, which is due to the small number of features and a small ratio n

k . In the next domain, we
illustrate the effect of a larger and more interesting feature space where this ratio is larger.
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Summary of empirical results
on small problems

TD, TDC  >  GTD-2  >  GTD
Sometimes  TD > TDC
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Computer Go experiment
• Learn a linear value 

function (probability of 
winning) for 9x9 Go 
from self play

• One million features, 
each corresponding to a 
template on a part of 
the Go board

• An established 
experimental testbed
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Off-policy result:
Baird’s counter-example
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Gradient algorithms converge.  TD diverges.



Further results with new 
gradient-descent TD methods

• Convergence with nonlinear function 
approximators (e.g., neural networks)

• Extensions to a very general form – GQ(λ)
- action values (Q)

- eligibility traces with state-dependent λ
- state-dependent termination function γ
- arbitrary behaviour policy

• First convergence result for the control case 
(changing target policy π) – Greedy-GQ



Specific conclusions

• TDC is roughly the same efficiency as 
conventional TD on on-policy problems

• and is guaranteed convergent under general 
off-policy training as well

• the key ideas appear to extend quite broadly



General conclusions
• The new gradient TD algorithms are a 

breakthrough in RL, solving two open probs:
- convergent O(n) off-policy learning 

- nonlinear TD

• Function approximation in RL is now nearly as 
straightforward as supervised learning

- the curse of dimensionality is broken

- general learning from interaction is now practical

• Learning rate can probably still be improved; 
there are yet new algorithms coming


