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The problem

® | earning to predict the outcome of a way
of behaving

® from fragments of its execution

® in a practical, scalable way

= Off-policy TD learning with linear function
approximation
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What is
temporal-difference learning?

® The most important and distinctive idea in
reinforcement learning

® A way of learning to predict,
from changes in your predictions,
without waiting for the final outcome

® A way of taking advantage of state
in multi-step prediction problems

® | earning a guess from a guess



Examples of TD learning
opportunities

® | earning to evaluate backgammon positions
from changes in evaluation within a game

® | earning where your tennis opponent will
hit the ball from his approach

® | earning what features of a market indicate
that it will have a major decline

® | earning to recognize your friend’s face in a
crowd



Function approximation

® [D learning is sometimes done in a table-
lookup context - where every state is
distinct and treated totally separately

® But really, to be powerful, we must
generalize between states

® [he same state never occurs twice

For example, in Computer Go,
we use |0° parameters to learn about 10!V positions




Advantages of TD methods
for prediction

|. Data efficient
Learn much faster on Markov problems

2. Cheap to implement
Require less memory, peak computation

3. Able to learn from incomplete sequences
In particular, able to learn off-policy



Off-policy learning

® | earning about a policy different than the
policy being used to generate actions

® Most often used to learn optimal
behaviour from a given data set, or from
more exploratory behaviour

® Key to ambitious theories of knowledge
and perception as continual prediction
about the outcomes of many options
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Value-function approximation
from sample trajectories

states

outcome @ True values:

\ V(s) =

Eloutcomes|

e Estimated values:

Vo(s) ~

V(s), 0 cRr”

* Linear approximation:
V@(S) =0 S os € RN
/

modifiable parameter vector

feature vector
for state s



Value-function approximation
from sample trajectories

feature parameter

vector  vector ® True values:

V(s) = E|outcome|s]

=2+0+5=3

e Estimated values:

Vo(s) ~ V(s), 6eR"

* Linear approximation:
V@(S) =0 S os € RN
/

modifiable parameter vector

feature vector
for state s



From terminal outcomes to
per-step rewards

state trajectory




From terminal outcomes to
per-step rewards

state trajectory

Q6
I
05
| target values (returns)
rewards O 4 = sum of future
9 rewards until end
&9 of episode, or until

| discounting horizon

Vi(s)

* True values:

A

O

Z*ytrt | sg =5

| t=0

discount rate,
0<~y<1




TD methods operate on
individual transitions

T T

Training set is now a bag of transitions
Select from them i.i.d.
(independently, identically distributed)

Sample transition: (s,r,s") or (¢,r,¢')
TD(0) algorithm:  d=r++0"'¢ —0'¢
0 — 0+ oo



TD methods operate on
individual transitions

transitions

d, - distribution of first state s
bs - expected reward given s oI |I |I 21 |I -|I 21 oI |I
Py - prob of next state s’ given s

Training set is now a bag of transitions
Select from them i.i.d.
(independently, identically distributed)

P and d
are linked

Sample transition: (s,7,s") or (¢,r,¢')
TD(0) algorithm:  d=r++0"'¢ —0'¢
0 — 0+ oo



Off-policy training

trajectories transitions

d;s
X oo of 1[4 o 1
Py
DI( P and d are no longer
linked

TD(0) may diverge!




Baird’s counter-example

® P and d are not linked

® (is all states with equal probability

® P is according to this Markov chain:

Vk(S) -
0(7)+20(1)

Vk(S) -
0(7)+20(2)

100%

Vi(s) =
0(7)+20(3)

Vk(S) = Vk(S) =
0(7)+20(4) (0(7)+26(5)

terminal
state

r=20

on all transitions



1D can diverge:
Baird’s counter-example
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TD(0) can diverge:
A simple example

§ = r+90 ¢ -0 ¢

= 0+20—-10
= 0
TD update: A0 = «adop
= af Diverges!

TD fixpoint: 0 = 0



Previous attempts to solve
the off-policy problem

® |mportance sampling

® With recognizers
® | east-squares methods, LSTD, LSPI, iLSTD
® Averagers

® Residual gradient methods



Desiderata:
We want a I D algorithm that

® Bootstraps (genuine TD)

® Works with linear function approximation
(stable, reliably convergent)

® |s simple, like linear TD — O(n)
® | earns fast, like linear TD
® Can learn off-policy (arbitrary P and d)

® | earns from online causal trajectories
(no repeat sampling from the same state)
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Gradient-descent learning
methods - the recipe

|. Pick an objective function J(6),a
parameterized function to be minimized

2. Use calculus to analytically compute the
gradient VyJ(0)

3. Find a “sample gradient” VyJ;(6) that you
can sample on every time step and whose
expected value equals the gradient

4. Take small steps in 6 proportional to the
sample gradient:

0 — 60— aVeJ,(0)



Conventional TD is not the
gradient of anything

Al = oo

TD(0) algorithm: S =1 +~40Td — 076

Assume there is a | such that: g‘; = §¢;

1

Then look at the second derivative:

0%.J B d(5¢;) B / L
693.6(92. o @9], — (’7¢j o ¢J)¢z 82J # 82J
00.00; = 00,00
aQJ _ a(5¢) L / . | ] 1 73 9
P0,00, ~ g, — 10909

Real 2" derivatives must be symmetric
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Gradient descent for TD:
What should the objective function be!

® (Close to the true values!?

Mean-Square MSE(0) = Z ds (Vo(s) — V(S))2

Error True value

2
= Vo=V Ip function
® Or close to satisfying the Bellman equation?

Mean-Square
Bellman Error

MSBE(#) = || Vo—TVy |1

where T'is the Bellman operator defined by

Vi = r+~PV
= TV



Value function geometry

Previous work on

gradient methods for TD A T eak ”
minimized this objective fn —___ @/” N TV hta €S you outside
(Baird 1995, 1999) R , 0 thespace
g 11 I1 projects you back
. J:! Into it
NI 11TV,
VQ ‘\‘ \\\
\\ __ P\MSPBE - . .
®.D = ~____— Better objective fn?
The space spanned by the feature vectors, V9 — HTV@
weighted by thle) s:tggigsi(t;;ion distribution Is the TD ﬁX_P oint

Mean Square Projected Bellman Error (MSPBE)




Backward-bootstrapping example (1)
(Dayan 1992)

Clearly, the true values are
V(B)=1 V(C)=0

‘ 1 V(A) = 0.5
By

/ But if you minimize the
~~~~~~~ expected D error:
e J(0) = E[67],
@—;O then you get the solution
V(B) =0.75 V(C) = 0.25
V(A)=0.5
Even in the tabular case (no FA)




Backward-bootstrapping example (2)

The two ‘A’ states look the

R same, they share a single
A B, > 1 feature and must be given the
:' ‘, B same approximate value
A -
| | iCh The example appears just like
\ AR :

) @ =0 thg previous, but now the
> minimum mean-squared

Bellman error solution is
V(B) =0.75 V(C) = 0.25
V(A)=0.5
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Three new algorithms

® GTD, the original gradient TD algorithm
(Sutton, Szepevari & Maei, 2008)

® GTD-2,a second-generation GTD

o TDC, TD with gradient correction

® (also GQ(A) and Greedy-GQ)



Derivation of the TDC algorithm

1
AG = —aVyJ(6)

(sampling)

| s— s
—SaV || Vo —TITV; |} l l/
" ¢ @

—5aV, (E[69]E [¢67] " E [d¢)])

~a(VeE[0$)E [p¢7] " E [6¢]

—aE [Vo[¢ (r+7¢'T0 — ¢ T0)]| E [p6] E[5¢)
ok [o(v¢/ —9)'| E[p6T] ' E[og]
~a(1E[¢'¢"] ~E[¢¢"))E[¢p¢"]  E[5¢)

0E [09] — arE [0 |[E [¢6T] " E [6

aE [3¢] - aoB [¢¢ " Jw This is the trick!

| T
adp — ayg'e w w € R"is a second
set of weights




The complete TD with gradient
correction (TDC) algorithm

® on each transition §——S8

® update two parameters with gradient
.~~~ correction

0 — 0 +Hadp)—(ave' (¢ w))
we—w+pB(6—¢ w)e

® where, as usual
S=r+~0"'¢ —0'¢



The complete TD with gradient
correction (TDC) algorithm

® on each transition §—8

® update two parameters

0 — 0+ adp— ard (¢ w)
w — w + B(0 _)¢ estimate of the

TD error (§) for

[
Where, as Usual the current state qb

S=r++0'¢' —0'¢
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Stability and convergence

There exists a projected-Bellman-error
objective function

J, vector of values, one per state

J©) = |v,-nrv,|;

generalized Bellman

such that operator

projection back

_ into the space of
O‘VQ J(Q) representable

functions

E|A6]

which guarantees convergence to J(0)=0
(under step-size conditions)



Convergence theorems

For arbitrary P and d

All algorithms converge w.p.| to the TD fix-point:
10| — 0

for GTD and GTD-2

a=03—0
for TDC
o = b > 0, n > max((), Amax)

Y



A little more theory

A oxdp = (r++0'¢'—0'¢)¢
= 0'(v¢' —9) ¢ +7¢
= (10 ~ ) 0 +10
180 o« —E|¢(¢—7¢) | 0+Elrg]
| |
] [ v convergent if
L |A0] o — A0 T b A is pos. def.
therefore,at A0 = b o
the TD fixpoint: o — 4-1p LSTD computes this directly
- T
1 o C=E][¢p |
_§V9MSPBE = —-A'C (A|9 — b) covariance
| matrix

always pos. def.
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Random walk problem (on-policy)

~— O~ O——E—

start

3 different feature representations.
* 5 tabular features
* 5 inverted-tabular features
* 3 features (genuine FA)



Boyan chain problem (on-policy)

Boyan 1999

-3 -3

-3 -3 3

0 0 0 0
0 0 0 0
1 0.75 0. 0]
0 0.25 0.5 1

| 3 states, 4 features
Exact solution possible



RMSPBE

RMSPBE

16 1

A2 1

.08 1

04 1

14 1

A1

.07

04 7

.00

Summary of empirical results
on small problems

Random Walk - Tabular features

Random Walk - Inverted features

20 1
GTD
GTD % 15 | A
o GTD
5 GTD
GTD2 eioz < 107
TDC n arb2 TDC\ \ GTD2
i~ - D TDC D
t t t i .00 t t t i
.03 .06 12 .25 0.5 0 100 200 .03 .06 12 .25 0.5 0 250 500
episodes episodes
Random Walk - Dependent features Boyan Chain
2.8
n
m 21 7
NS GTD o
AN D g4 |
\\\\\ 2 2 - GTD
NS 7 7 = TD2
" .\\y 0C 0.7 71 TDC TDC
™ | ~ TDC | - 0 o D —
.008 .015 .03 .06 .12 .25 0.5 0 100 200 300 400 .015.083 .06 .12 25 05 1 2 0 50 100
o episodes 0 episodes

TD,TDC > GTD-2 > GTD
Sometimes TD >TDC



Computer Go experiment

® |earn a linear value
function (probability of
winning) for 9x9 Go

from self play 2]

® One million features, 047

each corresponding to a
template on a part of S
the Go board TG

0 t t t t t !
.000001 .000003 .0000f1 .00003 .0001 .0003 .001

® An established x
experimental testbed

0.2 1t




Off-policy result:
Baird’s counter-example

10

-

o
-
o

-
o
(¢}

Parameter, 6(i)
o

-
o
(6]

GTD

RMSPBE

0 1000 2000 3000 4000 5000
Sweeps

GTD-2

TDC

0 20 40 60 80 100 120 140 160 180 200
Sweeps

Gradient algorithms converge. TD diverges.



Further results with new
gradient-descent ID methods

® Convergence with nonlinear function
approximators (e.g., neural networks)

® Extensions to a very general form — GQ(A)

action values (Q)
eligibility traces with state-dependent A

state-dependent termination function y

arbitrary behaviour policy

® First convergence result for the control case
(changing target policy 1T) — Greedy-GQ



Specific conclusions

TDC is roughly the same efficiency as
conventional TD on on-policy problems

and is guaranteed convergent under general
off-policy training as well

the key ideas appear to extend quite broadly



General conclusions

® The new gradient TD algorithms are a
breakthrough in RL, solving two open probs:

convergent O(n) off-policy learning

nonlinear TD

® Function approximation in RL is how nearly as
straightforward as supervised learning

the curse of dimensionality is broken

general learning from interaction is now practical

® | earning rate can probably still be improved;
there are yet new algorithms coming



