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Reinforcement learning and
temporal-difference learning

O Algorithms have been validated within four
research communities

O Artificial intelligence
© Psychology
© Operations research

© Neuroscience



Marr’s three levels of explanation
for information-processing systems

© Computation theory

. Reward pred. (TD) error
O What is computed?

O Algorithms
.. TD models
© How is it computed?

© Implementation

TD error = Dopamine

O Really, how is it done?
Levels can be validated independently



Brain Reward Systems

VUM neuron

Honeybee brain

R. Menzel, M. Hammer
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Problems with current I D
models of dopamine

O Implausible clock-like mechanism

© Poor handling of variations in reward timing

O Predicts large negative error on reward omission
© Needs large (non-physiological) negative errors
O Complexity

o nges in learning algorithm
Cha ges €a g algo t Daw, 2006

Niv et al., 2005
Bayer & Glimcher, 2005
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New model

O Temporal generalization via internal
microstimulus representation of overt stimuli

© Cueing role for rewards
© Underlying learning algorithm unchanged
O Retains abilities of previous TD models

O Extended eligibility traces



Stimulus representations

Q Trial level
@ Real time

© Presence/absence
@ CSC (current standard TD model)

@ Microstimuli
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Temporally-extended microstimuli
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Successive microstimuli get weaker
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you can understand everything
in this talk at this level:

O Linear TD models can only add things to
produce their predictions

O therefore, stimulus representations determine
what can be learned

© TD(A) is a magic thing that wants to predict the
discounted future reward

© Dopamine is TD error is Reward + APrediction



O Linear models can only add things  microstimuli

Prediction = Wt X = Zwt a:'t‘/
\weights

O But they want to predict discounted reward

|deal prediction = F nyk_erk

|deal prediction
profile

cue reward



Making microstimuli
with stimulus traces (1)

O Start with classical stimulus trace (Ebbinghaus, 1888)

© Stimuli leave behind a short term (seconds)
representation of themselves

Stimulus —— I L

| ~._ Linear stimulus trace



Making microstimuli
with stimulus traces (2)

O Microstimuli represent the trace’s height (coarsely)
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MS model - acquisition
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MS model - reward early
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Conclusion regards
microstimuli + reward cues

O Benefits
© more realistic, plausible, natural
© handles variations in reward timing better

© does not produce large negative TD errors

© Not tweaks to the TD model, not extensions

O should be thought of not as adding something,
but as taking away two artificial assumptions



Ongoing work

© Microstimuli + presence/absence

O Assessing effect of extended eligibility trace

O Response generation in classical conditioning

O Experimental work with Jim Kehoe, UNSW
© Rabbit NMR

O Detailed timing effects



