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Reinforcement learning and 
temporal-difference learning 

Algorithms have been validated within four 
research communities

Artificial intelligence

Psychology

Operations research

Neuroscience



Marr’s three levels of explanation
for information-processing systems

Computation theory

What is computed?

Algorithms

How is it computed?

Implementation

Really, how is it done?
Levels can be validated independently

TD error = Dopamine

TD models

Reward pred. (TD) error
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Brain Reward Systems



Basic effect

Information Encoded in
Dopaminergic Activity

Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction
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in the prediction of reward?

Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.
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Problems with current TD 
models of dopamine 

Implausible clock-like mechanism

Poor handling of variations in reward timing

Predicts large negative error on reward omission

Needs large (non-physiological) negative errors

Complexity

Changes in learning algorithm
Daw, 2006

Niv et al., 2005
Bayer & Glimcher, 2005



Stimulus
representation

Linear TD(!)

Stimuli, rewards

Microstimuli

TD error, 
dopamine

Prediction

TD 
models



New model

Temporal generalization via internal 
microstimulus representation of overt stimuli

Cueing role for rewards

Underlying learning algorithm unchanged

Retains abilities of previous TD models

Extended eligibility traces



Stimulus representations

Trial level

Real time

Presence/absence

CSC (current standard TD model)

Microstimuli



Complete Serial Compound (CSC) 
stimulus rep’n

Cue

Reward

Features,

clock-locked

microstimuli

No generalization 
between time instants

No independent effect 
of reward



Temporally-extended microstimuli

Generalization 
across nearby 
time instants

Cue

Reward

Successive
microstimuli

are more
diffuse

and weaker
(not shown)

Reward spawns 
its own set of 
microstimuli cf. Machado, 1997

Grossberg & Schmayuk, 1989
Suri & Schultz, 1999

Temporal 
uncertainty



Successive microstimuli get weaker
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you can understand everything 
in this talk at this level: 

Linear TD models can only add things to 
produce their predictions

therefore, stimulus representations determine 
what can be learned

TD(λ) is a magic thing that wants to predict the 
discounted future reward

Dopamine is TD error is Reward + ΔPrediction



Linear TD(λ)

Linear models can only add things

But they want to predict discounted reward

2.2 Learning Rules

The model learns through TD(λ) with linear function approximation (Sutton, 1988). At each time
step, the estimated value is determined by:

Vt = wT
t xt =

n∑

i=1

wt(i)xt(i) (5)

where xt is a vector of the activation levels xt(i) for the different features (microstimuli) and wt is
a corresponding vector of adjustable weights wt(i). As in the standard TD models, this estimated
value is compared to the reward received and the previous estimated value to generate a TD error
(δt: see Eq. 2). This TD error is then used to update the weight vector based on the following update
rule:

wt+1 = wt + αδtet (6)

where α is a step-size parameter and et is a vector of eligibility trace levels (see Sutton & Barto,
1998), which together help determine the speed of learning. The eligibility traces represent a de-
caying window of plasticity during which a microstimulus can be learned about (i.e., its weights
can be adjusted). These traces help resolve the problem of temporal credit assignment: How does
the system know to which of all antecedent events should the current reward be attributed? Each
feature (microstimulus) has its own corresponding eligibility trace which continuously decays, but
accumulates whenever the feature is present:

et+1 = γλet + xt (7)

where γ is the discount factor as above and λ is a decay parameter that determines the plasticity
window. Our model is completely defined by Equations 2-7 and 5 parameters, which were fixed at
the following values for the simulations below: λ = 0.95; α = 0.01; γ = 0.98; n = 50; σ = 0.2.

3 Results

Three experiments were conducted with the model: simple acquisition, reward omission, and varia-
tion in reward timing. All previous TD models can accommodate the facts of simple acquisition (as
does ours), but have had varying degrees of success with the latter two experiments.

3.1 Simple Acquistion

In simple acquisition, the animal is presented with a cue that reliably predicts reward a fixed time
later. Animals readily learn this contingency, and the dopamine system shows a characteristic re-
sponse. Initially, dopamine neurons show a phasic burst of firing after the reward. Once the stimulus-
reward contingency is well learned, the neurons fire after the earliest stimulus that predicts reward,
but show no deviation from baseline activity at the time of reward delivery. Intermediate stages of
learning show a mixture of these two end points with mid-sized responding at both stimulus onset
and reward delivery.

Figure 2 illustrates performance of the microstimulus TD model on simple acquisition. The three
rows present different stages of training, from the first trial (top row) to near-asymptotic performance
after 1000 trials (bottom row). The left column depicts the TD error (δt), and the right column
depicts the estimated value (Vt). For all simulations, there were 10 time steps per simulated second.
The cue was presented at time 0 and reward was delivered 2 s later (i.e., on time step 20). At the
onset of training, the estimated value at all time steps was 0, and when the (unexpected) reward was
delivered, there was a large, positive TD error. Notice how there was a small blip in the estimated
value after the reward was delivered, even on the very first trial. This blip is quite informative as
to how the model learns: After the reward was delivered, there was a large, positive TD error, and
the weights on eligible microstimuli were duly updated. These microstimuli, however, did not turn
off immediately, and thus, on the very next time step, there was an expectation of reward and the
estimated value was no longer 0.

In the middle of training (middle panel), there was a mid-sized error at both stimulus onset and
reward delivery, as the agent learned the correct estimated value function. Notice how there was
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Prediction

Information Encoded in
Dopaminergic Activity

Dopamine neurons of the ventral tegmental
area (VTA) and substantia nigra have long
been identified with the processing of re-
warding stimuli. These neurons send their
axons to brain structures involved in moti-
vation and goal-directed behavior, for ex-
ample, the striatum, nucleus accumbens,
and frontal cortex. Multiple lines of evi-
dence support the idea that these neurons
construct and distribute information about
rewarding events.

First, drugs like amphetamine and co-
caine exert their addictive actions in part by
prolonging the influence of dopamine on
target neurons (14). Second, neural path-
ways associated with dopamine neurons are
among the best targets for electrical self-
stimulation. In these experiments, rats press
bars to excite neurons at the site of an im-
planted electrode (15). The rats often
choose these apparently rewarding stimuli
over food and sex. Third, animals treated
with dopamine receptor blockers learn less
rapidly to press a bar for a reward pellet (16).
All the above results generally implicate
midbrain dopaminergic activity in reward-
dependent learning. More precise informa-
tion about the role played by midbrain do-
paminergic activity derives from experiments
in which activity of single dopamine neurons
is recorded in alert monkeys while they per-
form behavioral acts and receive rewards.

In these latter experiments (17), dopa-
mine neurons respond with short, phasic
activations when monkeys are presented
with various appetitive stimuli. For exam-
ple, dopamine neurons are activated when
animals touch a small morsel of apple or
receive a small quantity of fruit juice to the
mouth as liquid reward (Fig. 1). These pha-
sic activations do not, however, discrimi-
nate between these different types of re-
warding stimuli. Aversive stimuli like air
puffs to the hand or drops of saline to the
mouth do not cause these same transient
activations. Dopamine neurons are also ac-
tivated by novel stimuli that elicit orienting
reactions; however, for most stimuli, this
activation lasts for only a few presentations.
The responses of these neurons are relative-
ly homogeneous—different neurons re-
spond in the same manner and different
appetitive stimuli elicit similar neuronal re-
sponses. All responses occur in the majority
of dopamine neurons (55 to 80%).

Surprisingly, after repeated pairings of
visual and auditory cues followed by reward,
dopamine neurons change the time of their
phasic activation from just after the time of
reward delivery to the time of cue onset. In
one task, a naı̈ve monkey is required to
touch a lever after the appearance of a small
light. Before training and in the initial
phases of training, most dopamine neurons
show a short burst of impulses after reward
delivery (Fig. 1, top). After several days of
training, the animal learns to reach for the

lever as soon as the light is illuminated, and
this behavioral change correlates with two
remarkable changes in the dopamine neu-
ron output: (i) the primary reward no longer
elicits a phasic response; and (ii) the onset
of the (predictive) light now causes a phasic
activation in dopamine cell output (Fig. 1,
middle). The changes in dopaminergic ac-
tivity strongly resemble the transfer of an
animal’s appetitive behavioral reaction
from the US to the CS.

In trials where the reward is not deliv-
ered at the appropriate time after the onset
of the light, dopamine neurons are de-
pressed markedly below their basal firing
rate exactly at the time that the reward
should have occurred (Fig. 1, bottom). This
well-timed decrease in spike output shows
that the expected time of reward delivery
based on the occurrence of the light is also
encoded in the fluctuations in dopaminer-
gic activity (18). In contrast, very few do-
pamine neurons respond to stimuli that pre-
dict aversive outcomes.

The language used in the foregoing de-
scription already incorporates the idea that
dopaminergic activity encodes expectations
about external stimuli or reward. This inter-
pretation of these data provides a link to an
established body of computational theory (6,
7). From this perspective, one sees that dopa-
mine neurons do not simply report the occur-
rence of appetitive events. Rather, their out-
puts appear to code for a deviation or error
between the actual reward received and pre-
dictions of the time and magnitude of reward.
These neurons are activated only if the time
of the reward is uncertain, that is, unpredicted
by any preceding cues. Dopamine neurons are
therefore excellent feature detectors of the
“goodness” of environmental events relative
to learned predictions about those events.
They emit a positive signal (increased spike
production) if an appetitive event is better
than predicted, no signal (no change in spike
production) if an appetitive event occurs as
predicted, and a negative signal (decreased
spike production) if an appetitive event is
worse than predicted (Fig. 1).

Computational Theory and Model

The TD algorithm (6, 7) is particularly well
suited to understanding the functional role
played by the dopamine signal in terms of
the information it constructs and broadcasts
(8, 10, 12). This work has used fluctuations
in dopamine activity in dual roles (i) as a
supervisory signal for synaptic weight
changes (8, 10, 12) and (ii) as a signal to
influence directly and indirectly the choice
of behavioral actions in humans and bees
(9–11). Temporal difference methods have
been used in a wide spectrum of engineering
applications that seek to solve prediction
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Fig. 1. Changes in dopamine neurons’
output code for an error in the prediction of
appetitive events. (Top) Before learning, a
drop of appetitive fruit juice occurs in the
absence of prediction—hence a positive
error in the prediction of reward. The do-
pamine neuron is activated by this unpre-
dicted occurrence of juice. (Middle) After
learning, the conditioned stimulus predicts
reward, and the reward occurs according
to the prediction—hence no error in the
prediction of reward. The dopamine neu-
ron is activated by the reward-predicting
stimulus but fails to be activated by the
predicted reward (right). (Bottom) After
learning, the conditioned stimulus predicts
a reward, but the reward fails to occur be-
cause of a mistake in the behavioral re-
sponse of the monkey. The activity of the
dopamine neuron is depressed exactly at
the time when the reward would have oc-
curred. The depression occurs more than
1 s after the conditioned stimulus without
any intervening stimuli, revealing an inter-
nal representation of the time of the pre-
dicted reward. Neuronal activity is aligned
on the electronic pulse that drives the solenoid valve delivering the reward liquid (top) or the onset of the
conditioned visual stimulus (middle and bottom). Each panel shows the peri-event time histogram and
raster of impulses from the same neuron. Horizontal distances of dots correspond to real-time intervals.
Each line of dots shows one trial. Original sequence of trials is plotted from top to bottom. CS,
conditioned, reward-predicting stimulus; R, primary reward.
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Figure 1: Empirical data from monkey dopamine neurons (left column), simulation results from the
TD model with complete serial compound stimulus representation (middle coloumn), and results
from our TD model with microstimuli (right column). From top to bottom, data and simulations are
presented for unpredicted rewards, predicted rewards, and the omission of predicted rewards. See
text for full simulation details. Data are from Schultz et al. (1997). Permission to reprint pending.

1 Phasic Dopamine and TD Models

Three key properties of midbrain dopamine neurons led to the conclusion that they encode a reward
prediction error. First, these neurons show a burst of responding following unpredicted rewards.
Second, when a neutral cue reliably predicts the upcoming reward, the increased firing after the now
expected reward gradually disappears, and instead, a response burst begins to follow the earliest cue
for that reward. Finally, after learning, if an expected reward is omitted, then there is a decrease in
the firing rates of the dopamine neurons around the time when reward would ordinarily have been
received (Schultz et al., 1997).

All TD models of dopamine assume that the agent tries to learn a value V for every time step t in a
trial. The true value V ∗ is equal to the expected cumulative sum of discounted future reward:

V ∗t = E

[ ∞∑

k=1

γk−1rt+k

]
(1)

where rt is the reward at time step t, and γ is a discount factor that weights immediate rewards more
heavily than distant rewards. The value is thus a prediction of expected future reward. With perfect
knowledge of the environment, including state transition probabilities and the reward function, the
value could be calculated directly through dynamic programming techniques (e.g., see Sutton &
Barto, 1998). In the absence of such information, however, the value must be estimated. One
method for estimating the value is the temporal-difference (TD) algorithm whereby an error term δt

is calculated based on the difference between the current value and the discounted value on the next
time step, taking into account the reward received along the way:

δt = rt+1 + γVt+1 − Vt. (2)

A portion of this error is used to update the weights that determine the current value estimate.
This TD error is the feature of the reinforcement-learning models that has been hypothesized to be
encoded by the phasic firing of dopamine neurons.

2

Ideal prediction
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Making microstimuli 
with stimulus traces (1)

Start with classical stimulus trace (Ebbinghaus, 1888)

Stimuli leave behind a short term (seconds) 
representation of themselves 

Stimulus

Linear stimulus trace



Making microstimuli 
with stimulus traces (2)

Microstimuli represent the trace’s height (coarsely)
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MS model - acquisition
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MS model - reward early 
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Conclusion regards
microstimuli + reward cues

Benefits

more realistic, plausible, natural

handles variations in reward timing better

does not produce large negative TD errors

Not tweaks to the TD model, not extensions

should be thought of not as adding something, 
but as taking away two artificial assumptions



Ongoing work

Microstimuli + presence/absence

Assessing effect of extended eligibility trace

Response generation in classical conditioning

Experimental work with Jim Kehoe, UNSW

Rabbit NMR

Detailed timing effects


