Stimulus Representation in Temporal-difference Models of the Dopamine System

> Rich Sutton Department of Computing Science University of Alberta

joint work with Elliot Ludvig and Jim Kehoe

Outline

- General comments about modeling
- Overview of TD dopamine models
- Stimulus representations
- Core TD algorithm
- Reprise of CSC vs microstimuli comparison
- Conclusion

Reinforcement Learning & A d Artificial Intelligence

Pls: Rich Sutton Michael Bowling Dale Schuurmans Csaba Szepesvari

CIRCLE OF RESEARCH EXCELLENCE

Reinforcement learning and temporal-difference learning

- Algorithms have been validated within four research communities
 - Artificial intelligence
 - Psychology
 - Operations research
 - Neuroscience

Marr's three levels of explanation for information-processing systems

What is computed?

Algorithms

How is it computed?

Implementation

Really, how is it done?
Levels can be validated independently

Reward pred. (TD) error

TD models

TD error = Dopamine

Brain Reward Systems

R. Menzel, M. Hammer

Schultz et al., 1997

Problems with current TD models of dopamine

Implausible clock-like mechanism

- Poor handling of variations in reward timing
- Predicts large negative error on reward omission
- Needs large (non-physiological) negative errors
- Complexity
- Changes in learning algorithm

Daw, 2006 Niv et al., 2005 Bayer & Glimcher, 2005

TD models

New model

- Temporal generalization via internal microstimulus representation of overt stimuli
- Cueing role for rewards
- Underlying learning algorithm unchanged
 - Retains abilities of previous TD models
- Extended eligibility traces

Stimulus representations

Trial level

Real time

- Presence/absence
- CSC (current standard TD model)
- Microstimuli

Complete Serial Compound (CSC) stimulus rep'n

Temporally-extended microstimuli

Generalization across nearby time instants

Temporal uncertainty

cf. Machado, 1997 Grossberg & Schmayuk, 1989 Suri & Schultz, 1999

Successive microstimuli get weaker

you can understand everything in this talk at this level:

- Linear TD models can only add things to produce their predictions
 - therefore, stimulus representations determine what can be learned
- \odot TD(λ) is a magic thing that wants to predict the discounted future reward
- Solution
 Dopamine is TD error is Reward + Δ Prediction

But they want to predict discounted reward

Ideal prediction =
$$E\left[\sum_{k=1}^{\infty} \gamma^{k-1} r_{t+k}\right]$$

Making microstimuli with stimulus traces (1)

- Start with classical stimulus trace (Ebbinghaus, 1888)
 - Stimuli leave behind a short term (seconds) representation of themselves

Making microstimuli with stimulus traces (2)

Microstimuli represent the trace's height (coarsely)

MS model - acquisition

MS model - omission

MS model - reward early

Hollerman and Schultz, 1998

Conclusion regards microstimuli + reward cues

Benefits

- more realistic, plausible, natural
- Andles variations in reward timing better
- Idease does not produce large negative TD errors
- Not tweaks to the TD model, not extensions
 - should be thought of not as adding something, but as taking away two artificial assumptions

Ongoing work

- Microstimuli + presence/absence
- Assessing effect of extended eligibility trace
- Response generation in classical conditioning
- Experimental work with Jim Kehoe, UNSW
 - Rabbit NMR
 - Detailed timing effects