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There should be an Integrated Science of Mind
that applies equally well to people, animals, and machines

• Because all minds have essential commonalities 

• Because in the foreseeable future most minds will be machines 

• A Science of Mind does not rest easily within any existing field 

• Psychology? Artificial Intelligence? Cognitive Science? 

• Reinforcement Learning can be seen as the beginnings of a 
Science of Mind



An animal-like robot, being experimented on



The standard Reinforcement Learning diagram  
looks a lot like Thorndike’s instrumental learning…
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Hajime Kimura’s Reinforcement Learning Robots
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The theory that brain reward systems are implementing TD learning 
may be the most important interaction ever  

between the engineering sciences and neuroscience

Read Montague
Wolfram Schultz

data 1992+

Workshops in 1994; early papers in 1995; Science article in 1997

Peter Dayandata <1995
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James Houk

Terry
Sejnowski

Andy Barto

The Integrated Science of Mind’s biggest success so far:



What is TD learning?

• Learning a guess from a guess 

• A moment-by-moment version of the main idea of the 
Rescorla-Wagner model of associative learning:

“Organisms only learn when events violate their expectations.” 

–Rescorla & Wagner, 1972
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cf. Recordings from  
monkey Dopamine neurons15.6. TD ERROR/DOPAMINE CORRESPONDENCE 401

Figure 15.4: The response of dopamine neurons drops below baseline shortly after the
time when an expected reward fails to occur. Top: dopamine neurons are activated by
the unpredicted delivery of a drop of apple juice. Middle: dopamine neurons respond to
a conditioned stimulus (CS) that predicts reward and do not respond to the reward itself.
Bottom: when the reward predicted by the CS fails to occur, the activity of dopamine
neurons drops below baseline shortly after the time the reward is expected to occur. At the
top of each of these panels is shown the average number of action potentials produced by
monitored dopamine neurons within small time intervals around the indicated times. The
raster plots below show the activity patterns of the individual dopamine neurons that were
monitored; each dot represents an action potential. From Schultz, Dayan, and Montague, A
Neural Substrate of Prediction and Reward, Science, vol. 275, issue 5306, pages 1593-1598,
March 14, 1997. Reprinted with permission from AAAS.

act correctly (as would a reinforcement learning algorithm that learns policies as well
as value functions, such as an actor–critic algorithm), but this scenario is simpler to
describe than one in which a policy and a value function are learned simultaneously.

Now imagine that the agent’s experience divides into multiple trials, in each of
which the same sequence of states repeats, with a distinct state occurring on each
time step during the trial. Further imagine that the return being predicted is limited
to the return over a trial, which makes a trial analogous to a reinforcement learning

Wolfram Schultz, et al.
Dopamine encodes TD error
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The Brilliant Potential



A scientific understanding of mind 
would be the greatest scientific achievement of all time

Mind is computational and complex 

Understanding it requires more computation than we have previously had available 

We have enough “now” 




Moore’s Law:  
We live in an age of massive, ever-cheaper computation

2017‘10
adapted from  

Kurzweil AI

GPUs

Moore’s law will 
continue for the 
foreseeable future



Cognition as real-time high-banwidth information processing (skilled perception and action)  



Mind is 

• a means of predicting and controlling high-bandwidth, real-time 
information streams 

• “the computational part of the ability to achieve goals”  —John McCarthy 

• a matter of degree 

• in the eye of the beholder, an appearance 

• “the most powerful phenomena is the universe”  —Ray Kurzweil
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It is an exciting time in Artificial Intelligence;
In the last seven years:

• IBM’s Watson beats the best human players of Jeopardy! (2011) 
• Deep neural networks greatly improve the state of the art in speech recognition, 

computer vision, and natural language processing (2012—) 
• Self-driving cars becomes a plausible reality (2013—) 
• Deepmind’s DQN learns to play Atari games at the human level, from pixels,  

with no game-specific knowledge (≈2014, Nature) 
• University of Alberta program solves Limit Poker (2015, Science),  

and then defeats professional players at No-limit Poker (2017, Science) 
• Deepmind’s AlphaGo defeats legendary Go player Lee Sedol (2016, Nature),  

and world champion Ke Jie (2017), vastly improving over all previous programs 
• DeepMind’s AlphaZero decisively defeats the world’s best programs in Go, chess, and 

shogi (Chinese chess), with no prior knowledge other than the rules of each game



RL + Deep Learning Performance on Atari Games

Space Invaders Breakout Enduro



• Learned to play 49 games for the Atari 2600 game console, 
without labels or human input, from self-play and the score alone

• Learned to play better than all previous algorithms  
and at human level for more than half the games  

Reinforcement Learing + Deep Learning, applied to Classic Atari Games 
Google Deepmind 2015, Bowling et al. 2012

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).
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Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.
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mapping raw
screen pixels

to predictions
of final score
for each of 18

joystick actions

Same learning 
algorithm applied to 

all 49 games! 
w/o human tuning



• IBM’s Watson beats the best human players of Jeopardy! (2011) 
• Deep neural networks greatly improve the state of the art in speech recognition, 

computer vision, and natural language processing (2012—) 
• Self-driving cars becomes a plausible reality (2013—) 
• Deepmind’s DQN learns to play Atari games at the human level, from pixels,  

with no game-specific knowledge (≈2014, Nature) 
• University of Alberta program solves Limit Poker (2015, Science),  

and then defeats professional players at No-limit Poker (2017, Science) 
• Deepmind’s AlphaGo defeats legendary Go player Lee Sedol (2016, Nature),  

and world champion Ke Jie (2017), vastly improving over all previous programs 
• DeepMind’s AlphaZero decisively defeats the world’s best programs in Go, chess, and 

shogi (Chinese chess), with no prior knowledge other than the rules of each game

It is an exciting time in Artificial Intelligence;
In the last seven years:



The Bitter Lesson



The Bitter Lesson in Artificial Intelligence
• The less we build in, the better things work (eventually) 

• Every time we try to help, by building in how we think we think 
• in the short-term there is improvement 
• but in the long run it is counterproductive 

• We saw this in speech recognition, game playing (chess, Go, 
backgammon), computer vision, natural language processing 

• Deep learning is just the latest instance of this bitter lesson 

• Examples of this span the 70-year history of AI



The Bitter Lesson in Computer chess
• Early computer pioneers had hoped to program computers to play chess much 

like humans do, by relying primarily on chess heuristics –The Computer History Museum 

• By the 1970s, a new generation of chess machines arose that gave up on 
playing like people and focused on optimizing search 

• this was controversial, and the results were initially mixed 

• In 1997, IBM’s Deep Blue machine, using specialized hardware and a general  
α-β search defeated Gary Kasparov, the reigning world chess champion 

• At the time, many found Deep Blue’s victory unsatisfying (calling it a “brute 
force” solution and “not the way people play chess”) 

• Now, with AlphaZero, most of what was learned from Deep Blue is gone 
•  including α-β, hand-crafted value functions, the opening book, and the 

endgame database



The Bitter Lesson in Computer Go
• Chess machines were based on α-β search and state-evaluation 

functions, but neither of these worked well for Go 

• Heuristic methods were extensively tried and gave modest 
improvements, but not strong play 

• In 2006, a new kind of search (MCTS), was introduced, greatly 
improved performance, and transformed the field 

• Almost all the heuristics of previous programs were left out in MCTS 

• In 2016, deep learning and reinforcement learning were used to learn 
an effective state-value function, dramatically improving performance 

• Now, with AlphaZero, all human knowledge is removed, improving play
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Exponential improvement (since MCTS, 2006)
in the strength of the best computer Go programs
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The Bitter Lesson in visual object recognition 
• Early methods (dating back to the 1960s) used CAD-like models of the 

objects, or generalized-cylinder models, geometric models 

• Later methods use more generic features, like edges, gradients, Hessian and 
difference-of-Gaussian detectors, then SIFT and SURF features, and finally 
matched to models or dictionaries; 

• Each more-general method scaled better and eventually worked better 

• All this is thrown out in deep learning, which performs better and is easier to 
design 

• Features are learned instead of being built in 

• The only things built in are invariance to translation and scale. 



The Bitter Lesson in Artificial Intelligence
• In chess  

we thought human ideas were key, but it turned out (deep Blue 1997)  
that big, efficient, heuristic search was key 

• In computer Go 
we thought human ideas were key, but it turned out (MCTS 2006–)  
that big, sample-based search was key, 
and eventually all human knowledge was discarded (AlphaZero, 2018) 

• In speech recognition  
human ideas were key to early systems (Harpy and Hearsay, 1970s);  
later systems used engineered statistical models (HMMs, 1980s),  
but eventually all human designed features were discarded (deep learning, 2010s) 

• In natural language processing 
we thought that human-written rules were key,  
but it turned out that statistical machine learning and big data were key 

• In visual object recognition 
we thought human ideas were key, but it turned out (deep learning 2012–)  
that big data sets, many parameters, and long training was key



In AI, general principles have generally won the day
• Early symbolic, hand-crafted, and domain-specific AI methods relied heavily 

on human understanding and participation in their design

• Over time, statistical, learned, and general-purpose AI methods have steadily 
increased in relative importance

• In the early days of AI, a distinction was made between “strong” methods 
(powered by human input) and “weak” methods (relying on general principles)

• The terminology is telling; the founding fathers favored methods that 
sought to leverage human input

• But they were wrong; the weak have inherited AI



Many much-loved topics in Cognitive Science 
seem vulnerable to the bitter lesson

• Most cognitive scientists work at a high level  
by presuming lower levels are given; they presume things like: 

• language, objects, relations, space, other minds 

• But what if our preconceptions of these things are wrong? 

• Will all this work go the way of prior built-in features,  
and be swept away by some future version of deep learning?



The contents of minds are irredeemably complex;
we should stop trying to understanding them!

Instead, we should understand the meta-methods 
for finding the contents
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Tolman & Honzik (1930) “Insight in Rats”



Rat brains appear to process imaginary experience
• Recordings from place cells in the hippocampus appear to 

reveal what places the rat is 'thinking about’ 

• At choice points, rats imagine upcoming place sequences 

• Imagination also is seen during sleep and at rest times 

• Imagination is 6-7 times faster than physical movement 

• Paths can be synthesized in imagination that never occurred 
in reality

Pavlides & Winson 1989; Skaggs & McNaughton 1996; Foster & Wilson 2006; Euston, Tatsuno, & McNaughton 2007;  
Johnson & Redish, 2007; Gupta, van der Meer & Redish 2010



Example of Dyna,   
Planning & Learning 
via Imagination

“Dyna” Sutton, 1990



It is natural to base a Science of Mind on Marr’s Three Levels  
at which any information processing system can be understood

• Computational Theory Level
– What are the goals of the computation?
– What is being computed?
– Why are these the right things to compute?
– What overall strategy is followed?

• Representation and Algorithm Level
– How are these things computed?
– What representation and algorithms are used?

• Hardware Implementation Level
– How is this implemented physically?

What and Why?

How?

Really how?



Societal implications of advanced AI
• Intelligence Augmentation (IA!) will be a thread of lasting importance 

• a less threatening kind of AI,  
continuous with web search, speech recognition, assistants, user interfaces 

• There is no reason to think greater-than-human intelligences are not physically possible 

• They will be economically valuable, and scientifically fascinating 

• So I fully expect they will be made, if we don’t destroy ourselves first 

• It will probably be within our lifetimes  

• If we don’t destroy civilization first



• AI technology will be part of what disrupts existing social and power structures 

• AIs will force us to re-examine our moral and social foundations 

• Continuing trends that are 1000s of years old 

• AI will bring greater diversities of intelligences, both natural and artificial 

• There will be biases against the new and different. There will be feelings of entitlement 

• These will be counterproductive and eventually fade away 

• Universal Basic Income sounds like a terrible idea to me 

• AI soldiers/weaponry sounds like a terrible idea to me 

• Will we welcome independent AIs? Or force them to be outlaws?

In the long run…



Conclusion

• An Integrated Science of Mind would be a historic achievement 

• It is in reach now in every sense that matters 

• We can see parts of it in some Reinforcement Learning ideas 

• There is strikingly rapid recent progress in Artificial Intelligence,  
which also makes an ISoM seem potentially imminent 

• The contents of minds are irredeemably complex;  
we should stop trying to understanding them directly



Thank you for your attention

The RL&AI group at the 
Univ. of Alberta

in 2011

Join us at the 4th Multidisciplinary Conference on 
Reinforcement Learning and Decision Making (RLDM) 
on June, 2019, in Montreal, Quebec



Further reading
• For foundations: See the 2nd edition of the RL textbook, by Andy 

Barto and myself, available free on the internet. Includes TD learning 
and planning by imagination. Includes multi-disciplinary links to 
psychology, neuroscience, and control 

• For General Value Functions: See “Horde: A scalable real-time 
architecture for learning knowledge from unsupervised sensorimotor 
interaction”, AAMAS-2011, and Adaptive Behavior 22(2):146-160 

• For the general philosophy: See “Beyond reward: The problem of 
knowledge and data”, ILP 2011, “The grand challenge of predictive 
empirical abstract knowledge”, IJCAI-09 workshop, and the 
incomplete ideas blog at richsutton.com

thanks to Doina Precup, Satinder Singh, Mark Ring, Adam White, and Joseph Modayil

http://richsutton.com

