
Joseph Modayil, Michael J. Cimolini,
Richard S. Sutton, Gary Faulkner

An Encouraging Mobile Robot in the
Glenrose Rehabilitation Hospital

• helps over 20,000 families every year
• largest freestanding, tertiary rehabilitation

hospital in Canada
• located in Edmonton

The Glenrose Rehabilitation Hospital

• a new centre at the Glenrose hospital
• funded by donors
• a hub for new rehabilitation equipment and

technology
• has 4 distinct zones : Simulation, Virtual Reality,

Robotics and Cognitive Learning

The Building Trades Courage Centre

• part of the new technology in medical
rehabilitation
• devices are becoming more affordable and so,

more widely used

Robotics in medical rehabilitation

For the Glenrose:
• set up an autonomous mobile robot in the

Courage Centre
• learn about the unsupervised interactions of

patients, visitors, and staff with the robot
• make the robot a landmark that people will

remember
For Artificial Intelligence:
• collect days of sensorimotor data
• test new algorithms in the real world
• can an agent learn to react to spontaneous

interactions?

Goals of the project

• the robot, named Gleny, is a Create from the
company iRobot
• it is inexpensive but robust and reliable
• it can be controlled with a remote
• it runs weekdays from 9am to 4pm, it is

autonomous
• it executes a goldfish behavior
• the data is logged for offline experiments

Gleny now lives in the Courage Centre

• the robot learns in real time to make
predictions about its sensor signals
• predictions are compared to observed data
• it makes music

when a
difference is
observed
between the
data and the
predictions: the
robot is
surprised
• predictions are continually adapted to

match changes in the environment

Gleny can be surprised

Context of the Project State of the Project

An Encouraging Mobile Robot

Robotic devices used in the Courage Centre at Glenrose Hospital

Gleny

This work is supported by:

• quantifying the unsupervised interactions
between people and the robot
• developing behaviours that respond to

people and encourage more interaction

Ongoing work:

Introduction to
Reinforcement Learning

with Function Approximation
Rich Sutton

Reinforcement Learning and Artificial Intelligence Laboratory
Alberta Centre for Machine Learning
Department of Computing Science

University of Alberta
Canada

(with thanks to David Silver and Michael Littman for some slides and ideas)

R
A I
L

&

What is Reinforcement Learning?

Agent-oriented learning—learning by interacting with an
environment to achieve a goal

• more realistic and ambitious than other kinds of machine
learning

Learning by trial and error, with only delayed evaluative
feedback (reward)

• the kind of machine learning most like natural learning

• learning that can tell for itself when it is right or wrong

The beginnings of a science of mind that is neither natural
science nor applications technology

Lecture 1: Introduction to Reinforcement Learning

About RL

Many Faces of Reinforcement Learning

Computer Science

Economics

Mathematics

Engineering Neuroscience

Psychology

Machine
Learning

Classical/Operant
Conditioning

Optimal
Control

Reward
System

Operations
Research

Bounded
Rationality

Reinforcement
Learning

David Silver 2015

Example: Hajime Kimura’s RL Robots

Before After

Backward New Robot, Same algorithm

The RL Interface

• Environment may be unknown, nonlinear, stochastic and complex

• Agent learns a policy mapping states to actions

• Seeking to maximize its cumulative reward in the long run

Agent

Action,
Response,
Control

State,
Stimulus,
Situation

Reward,
Gain, Payoff,
Cost

Environment
(world)

Signature challenges of RL

Evaluative feedback (reward)

Sequentiality, delayed consequences

Need for trial and error, to explore as well as exploit

Non-stationarity

The fleeting nature of time and online data

Some RL Successes
• Learned the world’s best player of Backgammon (Tesauro 1995)

• Learned acrobatic helicopter autopilots (Ng, Abbeel, Coates et al
2006+)

• Widely used in the placement and selection of advertisements and
pages on the web (e.g., A-B tests)

• Used to make strategic decisions in Jeopardy! (IBM’s Watson 2011)

• Achieved human-level performance on Atari games from pixel-level
visual input, in conjunction with deep learning (Google Deepmind
2015)

• In all these cases, performance was better than could be obtained
by any other method, and was obtained without human instruction

Example: TD Gammon

 B
bar 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 W

bar

V(s, w)

w

s

Example: TD-Gammon Tesauro, 1992-1995

Start with a random Network

Play millions of games against itself

Learn a value function from this simulated experience

Six weeks later it’s the best player of backgammon in the world
Originally used expert handcrafted features, later repeated with raw board positions

estimated state value
(≈ prob of winning)

Action selection
by a shallow search

Some RL Successes
• Learned the world’s best player of Backgammon (Tesauro 1995)

• Learned acrobatic helicopter autopilots (Ng, Abbeel, Coates et al
2006+)

• Widely used in the placement and selection of advertisements on
the web (e.g. A-B tests)

• Used to make strategic decisions in Jeopardy! (IBM’s Watson 2011)

• Achieved human-level performance on Atari games from pixel-level
visual input, in conjunction with deep learning (Google Deepmind
2015)

• In all these cases, performance was better than could be obtained
by any other method, and was obtained without human instruction

RL + Deep Learing Performance on Atari Games

Space Invaders Breakout Enduro

• Learned to play 49 games for the Atari 2600 game console, 
without labels or human input, from self-play and the score alone

• Learned to play better than all previous algorithms 
and at human level for more than half the games 

RL + Deep Learning, applied to Classic Atari Games 
Google Deepmind 2015, Bowling et al. 2012

difficult and engaging for human players. We used the same network
architecture, hyperparameter values (see Extended Data Table 1) and
learning procedure throughout—taking high-dimensional data (210|160
colour video at 60 Hz) as input—to demonstrate that our approach
robustly learns successful policies over a variety of games based solely
on sensory inputs with only very minimal prior knowledge (that is, merely
the input data were visual images, and the number of actions available
in each game, but not their correspondences; see Methods). Notably,
our method was able to train large neural networks using a reinforce-
ment learning signal and stochastic gradient descent in a stable manner—
illustrated by the temporal evolution of two indices of learning (the
agent’s average score-per-episode and average predicted Q-values; see
Fig. 2 and Supplementary Discussion for details).

We compared DQN with the best performing methods from the
reinforcement learning literature on the 49 games where results were
available12,15. In addition to the learned agents, we also report scores for
a professional human games tester playing under controlled conditions
and a policy that selects actions uniformly at random (Extended Data
Table 2 and Fig. 3, denoted by 100% (human) and 0% (random) on y
axis; see Methods). Our DQN method outperforms the best existing
reinforcement learning methods on 43 of the games without incorpo-
rating any of the additional prior knowledge about Atari 2600 games
used by other approaches (for example, refs 12, 15). Furthermore, our
DQN agent performed at a level that was comparable to that of a pro-
fessional human games tester across the set of 49 games, achieving more
than 75% of the human score on more than half of the games (29 games;

Convolution Convolution Fully connected Fully connected

No input

Figure 1 | Schematic illustration of the convolutional neural network. The
details of the architecture are explained in the Methods. The input to the neural
network consists of an 84 3 84 3 4 image produced by the preprocessing
map w, followed by three convolutional layers (note: snaking blue line

symbolizes sliding of each filter across input image) and two fully connected
layers with a single output for each valid action. Each hidden layer is followed
by a rectifier nonlinearity (that is, max 0,xð Þ).

a b

c d

 0
 200
 400
 600
 800

 1,000
 1,200
 1,400
 1,600
 1,800
 2,000
 2,200

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

 0

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 s
co

re
 p

er
 e

pi
so

de

Training epochs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 a
ct

io
n

va
lu

e
(Q

)

Training epochs

Figure 2 | Training curves tracking the agent’s average score and average
predicted action-value. a, Each point is the average score achieved per episode
after the agent is run with e-greedy policy (e 5 0.05) for 520 k frames on Space
Invaders. b, Average score achieved per episode for Seaquest. c, Average
predicted action-value on a held-out set of states on Space Invaders. Each point

on the curve is the average of the action-value Q computed over the held-out
set of states. Note that Q-values are scaled due to clipping of rewards (see
Methods). d, Average predicted action-value on Seaquest. See Supplementary
Discussion for details.

RESEARCH LETTER

5 3 0 | N A T U R E | V O L 5 1 8 | 2 6 F E B R U A R Y 2 0 1 5

Macmillan Publishers Limited. All rights reserved©2015

mapping raw
screen pixels

to predictions
of final score
for each of 18

joystick actions

Same learning
algorithm applied
to all 49 games!

w/o human tuning

Some RL Successes
• Learned the world’s best player of Backgammon (Tesauro 1995)

• Learned acrobatic helicopter autopilots (Ng, Abbeel, Coates et al
2006+)

• Widely used in the placement and selection of advertisements on
the web (e.g. A-B tests)

• Used to make strategic decisions in Jeopardy! (IBM’s Watson 2011)

• Achieved human-level performance on Atari games from pixel-level
visual input, in conjunction with deep learning (Google Deepmind
2015)

• In all these cases, performance was better than could be obtained
by any other method, and was obtained without human instruction

Outline

Introduction to RL successes and challenges

The formal problem: Finite Markov decision processes

Part I: Exact solution methods and core theoretical ideas

Part II: Approximate solution methods
• Semi-gradient methods
• On-policy and off-policy methods
• The deadly triad; how to evade or survive it

Miscellany and closing remarks

You are the reinforcement learner!
(interactive demo)

State Action

A 2

B 1

Optimal policy
(deterministic)

True model of the world

+20,
 20%

+40,20%

+40,80%

A B-10,20%

-10,80%1
2

1
2

+10,
100%

+20,80%

The Environment:
A Finite Markov Decision Process (MDP)

Discrete time

A finite set of states

A finite set of actions

A finite set of rewards

Life is a trajectory:

With arbitrary Markov (stochastic, state-dependent) dynamics:

+20,
 20%

+40,20%

+40,80%

A B-10,20%

-10,80%1
2

1
2

+10,
100%

+20,80%

t = 1, 2, 3, . . .

. . . St ,At ,Rt+1, St+1,At+1,Rt+2, St+2, . . .

p(r , s 0|s, a) = Prob

h
Rt+1 = r , St+1 = s

0
��� St = s,At = a

i

Howard, 1960

Policies

Deterministic policy

An agent following a policy

Informally the agent’s goal is to choose each action so as to
maximize the discounted sum of future rewards,

We are searching for a policy

a = ⇡(s)

At = ⇡(St)

to choose each At to maximize Rt+1 + �Rt+2 + �2Rt+3 + · · ·

The number of
deterministic policies
is exponential in the

number of states

State Action

A 2

B 1

e.g.

Action-value functions

An action-value function says how good it is to be in a state,
take an action, and thereafter follow a policy:

q⇡(s, a) = E
h
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

��� St=s,At=a,At+1:1⇠⇡
i

State Action Value

A 1 130.39

A 2 133.77

B 1 166.23

B 2 146.23

Action-value function
for the optimal policy and 𝜸=0.9

+20,
 20%

+40,20%

+40,80%

A B-10,20%

-10,80%1
2

1
2

+10,
100%

+20,80%

Optimal policies

A policy is optimal if it maximizes the action-value function:

Thus all optimal policies share the same optimal value function

Given the optimal value function, it is easy to act optimally:

We say that the optimal policy is greedy with respect to the
optimal value function

There is always at least one deterministic optimal policy

⇡⇤

q⇡⇤(s, a) = max

⇡
q⇡(s, a)= q⇤(s, a)

⇡⇤(s) = argmax

a
q⇤(s, a) “greedification”

Part I
Exact Solution Methods

(tabular methods)

Q-learning, the simplest RL algorithm
1. Initialize an array arbitrarily

2.Choose actions in any way, perhaps based on , such that all
actions are taken in all states (infinitely often in the limit)

3.On each time step, change one element of the array:

4. If desired, reduce the step-size parameter α over time

Theorem: For appropriate choice of 4, converges to , and
its greedy policy to an optimal policy (Watkins & Dayan 1992)

This is kind of amazing — learning long-term optimal behavior
without any model of the environment, for arbitrary MDPs!

�Q(St ,At) = ↵
⇣
Rt+1 + �max

a
Q(St+1, a)� Q(St ,At)

⌘

Q

Q

Q(s, a)

q⇤
⇡⇤

target

Demo
Off-policy learning gridworld

Policy improvement theorem

Given the value function for any policy :

It can always be greedified to obtain a better policy:

where better means:

with equality only if both policies are optimal

q⇡(s, a) for all s, a

⇡0
(s) = argmax

a
q⇡(s, a)

q⇡0
(s, a) � q⇡(s, a) for all s, a

⇡

(is not unique)⇡0

The dance of policy and value (Policy Iteration)

Any policy evaluates to a unique value
function (soon we will see how to learn it)

which can be greedified to produce a
better policy

That in turn evaluates to a value function

which can in turn be greedified…

Each policy is strictly better than the
previous, until eventually both are optimal

There are no local optima

The dance converges in a finite number
of steps, usually very few

⇡1

q⇡1

⇡2
q⇡2

⇡3

⇡⇤

q⇡3

q⇤

⇡⇤

. . .

evaluate

greedify

evaluate

greedify

evaluate

eval

gre
ed

gree
dify

The dance is very robust

to initial conditions

to delayed and asynchronous updating, as in parallel and distributed
implementations

to incomplete evaluation and greedification

• updating only some states but not others

• updating only part of the way

to randomization and noise

in particular, it works if only a single state is updated at a time by a
random amount that is only correct in expectation

The Explore/Exploit dilemma

You can’t do the action that you think is best all the time

• because you will miss out big—forever—if you are wrong

• to find the real best action, you must explore them all…an
infinite number of times!

You also can’t explore all the time

• because then you would never get any advantage of your
learning

Thus you must both explore and exploit, but neither to excess.
What is the right balance?

How did Q-learning escape the dilemma?

Q-learning, the simplest RL algorithm
1. Initialize an array arbitrarily

2.Choose actions in any way, perhaps based on , such that all
actions are taken in all states (infinitely often in the limit)

3.On each time step, change one element of the array:

4. If desired, reduce the step-size parameter α over time

�Q(St ,At) = ↵
⇣
Rt+1 + �max

a
Q(St+1, a)� Q(St ,At)

⌘

Q

Q(s, a)

q⇤(s, a) = E
h
Rt+1

+ �max

a0
q⇤(St+1

, a0)
| {z }
Q-learning’s target for Q(St ,At)

��� St=s,At=a
i

Bootstrapping
The key idea underlying both dynamic programming (DP) and
all temporal-difference (TD) learning

Updating an estimate from an estimate, a guess from a guess

Based on the Bellman expectation equation:

or the Bellman optimality equation:

q⇡(s, a)= E
h
Rt+1 + �Rt+2 + �2Rt+3 + · · ·

��� St=s,At=a,At+1:1⇠⇡
i

= E
h
Rt+1 + �q⇡(St+1,At+1)

��� St=s,At=a,At+1⇠⇡
i

Q-learning is off-policy learning

Off-policy learning is learning about the value of a policy other
than the policy being used to generate the trajectory

Q-learning learns about the value of its deterministic greedy
policy—which gradually become optimal—from data while
behaving in a more exploratory manner
• thus Q-learning is off-policy
• and this is essential to its strategy for escaping the explore/

exploit dilemma

Some terminology
• the target policy is the policy being learned about
• the behavior policy is the policy generating the trajectory data
• on-policy learning is when the two policies are the same

Part II
Approximate Solution Methods

(function approximation)

So, RL finds optimal policies for arbitrary environments, if the
value functions and policies can be exactly represented in
tables

But the real world is too large and complex for tables

Will RL work with approximations?

Will RL work with function approximators?

q̂(s, a,✓) ⇡ q⇤(s, a) or ⇡ q⇡(s, a)

Function approximation

Represent the action-value function by a parameterized
function approximator with parameter

The approximator could be a deep neural network, with the
weights being the parameter

• or simply a linear weighting of features (the most pressing
theoretical problems are all best addressed in this setting)

Function approximation is a powerful concept, e.g., subsuming
much of the problem of hidden state

For large applications, it is important that all computations
scale linearly with the number of parameters

✓

Does Q-learning work with function
approximation?

Yes, there is a obvious generalization of Q-learning to function
approximation (Watkins 1989)

Often, it works well

But there are counterexamples

• simple examples where the parameters diverge to infinity

• even for linear function approximation

We could get by, but something is not right, there is something,
probably many things, that we are not understanding

Semi-gradient Q-learning (Watkins 1989)

Consider the following objective function, based on the
Bellman optimality equation:

The target here depends on the parameter, but if we ignore
that dependence when taking the derivative, then we get a
semi-gradient Q-learning update:

L(✓) = E

2

664

Rt+1 + �max

a
q̂(St+1, a,✓)

| {z }
target

� q̂(St ,At ,✓

!2

3

775

�✓t = ↵
⇣
Rt+1 + �max

a
q̂(St+1, a,✓t)� q̂(St ,At ,✓t)

⌘@q̂(St ,At ,✓t)

@✓t

Semi-gradient Sarsa (Rummery 1994, Sutton 1988)

Consider instead an objective function based on the Bellman
expectation equation:

Again the target depends on the parameter, and again we
ignore that dependence when taking the derivative, this time to
get the semi-gradient Sarsa update:

This is an on-policy algorithm: it approximates not ;  
thus should be near greedy, typically it is 𝜀-greedy

L(✓) = E

2

64

Rt+1 + �q̂(St+1,At+1,✓)| {z }

target

� q̂(St ,At ,✓

!2
3

75

�✓t = ↵
⇣
Rt+1 + �q̂(St+1,At+1,✓t)� q̂(St ,At ,✓t)

⌘@q̂(St ,At ,✓t)

@✓t

q⇡ q⇤
⇡

Why is it called Sarsa?
It is the only learning update that uses exactly these five things
from the trajectory:

Sarsa is equivalent to the TD(0) algorithm (Sutton 1988) when
applied to state-action pairs rather than to states

. . . St ,At ,Rt+1, St+1,At+1, . . .

What is an 𝜀-greedy policy?

An 𝜀-greedy policy is a stochastic policy that is usually greedy,
but with small probability 𝜀 instead selects an action at random

As an on-policy method, Semi-gradient
Sarsa has good convergence properties

If the function approximator is linear, it is

• guaranteed convergent for prediction (fixed target policy)
(Sutton 1988, Dayan 1992, Tsitsiklis & Van Roy 1997)

• guaranteed non-divergent for control, with bounded error
(though may “chatter” –Gordon 1995)

For general non-linear function approximation, there is one
known counterexample, but it is very artificial and contrived

On-policy methods typically perform better than off-policy
methods, but find poorer policies

Cliff-walking example (on-policy vs off-policy)

Reward
per

epsiode

!100

!75

!50

!25

0 100 200 300 400 500

Episodes

Sarsa

Q-learning

S G

r = !100

T h e C l i f f

r = !1 safe path

optimal path

R

R

66 CHAPTER 3. FINITE MARKOV DECISION PROCESSES

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A'

B'+10

+5

Actions

(a) (b)
Figure 3.5: Grid example: exceptional reward dynamics (left) and state-value function for
the equiprobable random policy (right).

except those that move the agent out of the special states A and B. From state A,
all four actions yield a reward of +10 and take the agent to A0. From state B, all
actions yield a reward of +5 and take the agent to B0.

Suppose the agent selects all four actions with equal probability in all states.
Figure 3.5b shows the value function, v⇡, for this policy, for the discounted reward
case with � = 0.9. This value function was computed by solving the system of
equations (3.12). Notice the negative values near the lower edge; these are the result
of the high probability of hitting the edge of the grid there under the random policy.
State A is the best state to be in under this policy, but its expected return is less
than 10, its immediate reward, because from A the agent is taken to A0, from which
it is likely to run into the edge of the grid. State B, on the other hand, is valued
more than 5, its immediate reward, because from B the agent is taken to B0, which
has a positive value. From B0 the expected penalty (negative reward) for possibly
running into an edge is more than compensated for by the expected gain for possibly
stumbling onto A or B.

Example 3.9: Golf To formulate playing a hole of golf as a reinforcement learning
task, we count a penalty (negative reward) of �1 for each stroke until we hit the
ball into the hole. The state is the location of the ball. The value of a state is the
negative of the number of strokes to the hole from that location. Our actions are
how we aim and swing at the ball, of course, and which club we select. Let us take
the former as given and consider just the choice of club, which we assume is either a
putter or a driver. The upper part of Figure 3.6 shows a possible state-value function,
vputt(s), for the policy that always uses the putter. The terminal state in-the-hole
has a value of 0. From anywhere on the green we assume we can make a putt; these
states have value �1. O↵ the green we cannot reach the hole by putting, and the
value is greater. If we can reach the green from a state by putting, then that state
must have value one less than the green’s value, that is, �2. For simplicity, let us
assume we can putt very precisely and deterministically, but with a limited range.
This gives us the sharp contour line labeled �2 in the figure; all locations between
that line and the green require exactly two strokes to complete the hole. Similarly,
any location within putting range of the �2 contour line must have a value of �3,
and so on to get all the contour lines shown in the figure. Putting doesn’t get us
out of sand traps, so they have a value of �1. Overall, it takes us six strokes to get
from the tee to the hole by putting.

Cliff-walking example (on-policy vs off-policy)

both algorithms
are ε−greedy

ε = 0.1

R

R

(on-policy)

(off-policy)

Mountain Car Demo

Moore 1990, Sutton 1996

Goal

Gravity wins

• Linear function
approximation

• Coarse-coded features
of state (tile coding,
CMAC)

Acrobot Demo, Sarsa(λ=0.9)  
Episode 6

Acrobot Demo, Sarsa(λ=0.9)
Episode 40+

RoboCup soccer keepaway
Stone, Sutton & Kuhlmann, 2005

Learned

Random

Hand-coded

Hold

Stone, Sutton & Kuhlmann, 2005

13 Continuous State Variables
(for 3 vs 2)

11 distances among
the players, ball,
and the center of
the field

2 angles to takers
along passing lanes

How is the state encoded?
In 13 continuous state variables

RoboCup Feature Vectors

.

.
Sparse, coarse,

tile coding
Linear
map θ

...

...

.

.

.
Full

soccer
state

action
values

Huge binary feature vector
(about 400 1’s and 40,000 0’s)

13 continuous
state variables

r
φ s

The Feature-Construction Pipeline

But let’s return to the bad news,
the problem of instability with

semi-gradient Q-learning

What causes the problem of instability?

It has nothing to do with learning or sampling

• Even dynamic programming, the classical solution method
for known MDPs, suffers from divergence with function
approximation

It has nothing to do with exploration, greedification, or control

• Even policy evaluation alone can diverge

It has nothing to do with complex non-linear approximators

• Even simple linear approximators can produce instability

The deadly triad
The risk of divergence arises whenever we combine three things:

1. Function approximation

significantly generalizing from large numbers of examples

2. Bootstrapping

learning value estimates from other value estimates,  
as in dynamic programming and temporal-difference learning

3. Off-policy learning

learning about a policy from data not due to that policy,  
as in Q-learning, where we learn about the greedy policy from
data with a necessarily more exploratory policy

Any two without the third is ok

(Why is dynamic programming off-policy?)

✓Sarsa

Bootstrapping is critical to the computational efficiency of DP

Bootstrapping is critical to the data efficiency of TD methods

On the other hand, bootstrapping introduces bias, which harms
the asymptotic performance of approximate methods

The degree of bootstrapping can be finely controlled via the λ
parameter, from λ=0 (full bootstrapping) to λ=1 (no bootstrapping)

For the naive loss: 
  

  
semi-gradient Sarsa(λ) converges to a fixpoint where

⇒ λ=1 is best!?

L(✓Sarsa)  1� ��

1� �
min
✓

L(✓)

Can we do without bootstrapping?

L(✓) = E
⇣

q⇡(St ,At)� q̂(St ,At ,✓
⌘2

�

Tsitsiklis & Van Roy 1997

L(✓) = E
⇣

q⇡(St ,At)� q̂(St ,At ,✓)
⌘2

�

✓Sarsa

Bootstrapping is critical to the computational efficiency of DP

Bootstrapping is critical to the data efficiency of TD methods

On the other hand, bootstrapping introduces bias, which harms
the asymptotic performance of approximate methods

The degree of bootstrapping can be finely controlled via the λ
parameter, from λ=0 (full bootstrapping) to λ=1 (no bootstrapping)

For the naive loss: 
  

  
semi-gradient Sarsa(λ) converges to a fixpoint where

⇒ λ=1 is best!?

L(✓Sarsa)  1� ��

1� �
min
✓

L(✓)

Can we do without bootstrapping?

Tsitsiklis & Van Roy 1997

4 examples of the effect of bootstrapping  
suggest that λ=1 (no bootstrapping) is a very poor choice

Pure
bootstrapping

No
bootstrapping

In all cases,
lower is better

Red points are  
the cases of no
bootstrapping

Other ways to survive the deadly triad
Use high λ. Use good features

Recent results suggest that replay and more stable targets (e.g., Double
Q-learning, van Hasselt 2010) may help, but it is too soon to be sure

Use least-squares methods like off-policy LSTD(λ) (Yu 2010, Mahmood et
al. 2015). Such methods (Bradtke & Barto 1996, Boyan 2000) easily
survive the triad, but their computational costs scale with the square of the
number of parameters

Try the new true-gradient RL methods (Gradient-TD and proximal-gradient-
TD) developed by Maei (2011) and Mahadevan (2015) et al. These seem
to me to be the best attempts to make TD methods with the robust
convergence properties of stochastic gradient descent. Residual gradient
methods (Baird 1999) are also true gradient methods, but optimize a poor
objective, or can’t learn purely from data (double sampling). These and
other methods based on the Bellman error/residual are not recommended

Try the even newer Emphatic-TD methods (Sutton, White & Mahmood
2015, Yu 2015). These semi-gradient methods attain stability through an
extension of the early on-policy theorems

Outline

Introduction to RL successes and challenges

The formal problem: Finite Markov decision processes

Part I: Exact solution methods and core theoretical ideas

Part II: Approximate solution methods
• Semi-gradient methods
• On-policy and off-policy methods
• The deadly triad; how to evade or survive it

Miscellany and closing remarks

The many dimensions of RL
Problems

• prediction vs control

• MDPs vs Bandits (one state, non-sequential)

Methods

• Tabular vs function approximation

• On-policy vs off-policy

• Bootstrapping vs Monte Carlo (unified by eligibility traces)

• Model-based vs model-free

• Value-based vs policy-based

And yet there is an amazing unity and convergence of methods

Policy-gradient actor-critic methods

Policy is explicitly represented
with its own parameters
independent of any value
function

Policy parameters are updated
by stochastic gradient ascent in
a performance measure such as
average reward per step

A state-value function (critic) is
optional but can significantly
reduce variance

Good convergence properties
(on-policy)

Why approximate policies rather than values?

In many problems, the policy is simpler than the value function

In many problems, the optimal policy is stochastic

• e.g., bluffing, POMDPs

To enable smoother change in policies

To avoid a search on every step (the max)

To better relate to biology

γ!

We should never discount 
when optimizing approximate policies!

It breaks the definition of an optimal policy

With approximation, the optimal policy is no
longer representable

There is no way to rank the remaining policies

Different policies will be best in different states

Instead, you must say what states you care
about

Or else use average reward  
(which you should probably do anyway)

Model-based reinforcement learning

Learn a model of the environment’s transition dynamics

Use it to generate simulated trajectories

Apply RL methods to the simulated trajectories, as if they had
really happened, to learn an action-value function and policy

Can be intermixed with direct RL

p̂(r , s 0|s, a) ⇡ p(r , s 0|s, a)

Model-based RL: GridWorld Example

Andrew Ng, Adam Coates, Pieter Abbeel, et al., Stanford University

Eligibility traces

An elegant unification of bootstrapping and Monte Carlo (non-
bootstrapping) methods

A key algorithmic innovation that greatly reduces computational
complexity in multi-step prediction learning; its most important
advantages have nothing to do with bootstrapping or control

Necessary to extend RL beyond discrete time steps that just
happen to be nicely aligned with the world’s causal dynamics

One of the most algorithmically intense topics in RL
• interacts strongly with off-policy learning via importance

sampling, and concomitant struggles to reduce variance

Temporal abstraction in RL

Function approximation abstracts over state, but we need also
to abstract over time

There are several approaches, including the framework of
options—macro-actions of extended and variable duration that
can nevertheless interoperate with primitive actions in DP
planning methods and TD learning methods

The problems of temporal abstraction can be divided into three
classes, increasing in difficulty:
• representing temporal abstractions (e.g., by options)
• learning temporal abstractions (e.g., by off-policy methods)
• discovering temporal abstractions and selecting among them

Conclusion
Reinforcement learning is a big topic, with a long history, an
elegant theoretical core, novel algorithms, many open
problems, and vast unexplored territories

RL can be viewed as a microcosm of the whole AI problem,
including planning, acting, learning, perception, world
modeling, even knowledge representation

Yet, even so, it can be reduced to small steps on each of
which measurable progress can be made

RL fits well into the longest mega-trend in AI, that towards
turning more of the work over to the machine

Realistic, ambitious, pragmatic

Thank you for your attention

The RL&AI group at
the Univ. of Alberta

in 2011

