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What is Reinforcement Learning?

e Agent-oriented learning—Ilearning by interacting with an
environment to achieve a goal

more realistic and ambitious than other kinds of machine
learning

e Learning by trial and error, with only delayed evaluative
feedback (reward)

the kind of machine learning most like natural learning

learning that can tell for itself when it is right or wrong

e The beginnings of a science of mind that is neither natural
science nor applications technology
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Example: Hajime Kimura’s RL Robots

e

Backward New Robot, Same algorithm



The RL Interface

Agent
A
| State, Reward, Action,
S.tlmu.|u5, Gain, Payoff, Response,
Situation Cost Control

Environment
(world)

 Environment may be unknown, nonlinear, stochastic and complex
 Agent learns a policy mapping states to actions

Seeking to maximize its cumulative reward in the long run



Signature challenges of RL

e Evaluative feedback (reward)

e Sequentiality, delayed consequences

e Need for trial and error, to explore as well as exploit
e Non-stationarity

e The fleeting nature of time and online data



Some RL Successes

Learned the world’s best player of Backgammon (Tesauro 1995) ~§

Learned acrobatic helicopter autopilots (Ng, Abbeel, Coates et al
2006+)

Widely used in the placement and selection of advertisements and
pages on the web (e.g., A-B tests)

Used to make strategic decisions in Jeopardy! (IBM’s Watson 2011)

Achieved human-level performance on Atari games from pixel-level
visual input, in conjunction with deep learning (Google Deepmind
2015)

In all these cases, performance was better than could be obtained
by any other method, and was obtained without human instruction



Example: TD-Gammon Tesauro, 1992-1995
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Start with a random Network

Play millions of games against itself
Learn a value function from this simulated experience

Six weeks later it’s the best player of backgammon in the world
Originally used expert handcrafted features, later repeated with raw board positions
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RL + Deep Learing Performance on Atari Games
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RL + Deep Learning, applied to Classic Atari Games

Google Deepmind 2015, Bowling et al. 2012

e Learned to play 49 games for the Atari 2600 game console,
without labels or human input, from self-play and the score alone

Convolution Convolution ~ Fully connected Fully connect
v v v v

to predictions

of final score
for each of 18
joystick actions

mapping raw
screen pixels

Same learning

 Learned to play better than all previous algorithms Pty
and at human level for more than half the games bty
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Outline

e Introduction to RL successes and challenges
e The formal problem: Finite Markov decision processes
e Part |: Exact solution methods and core theoretical ideas

e Part Ill: Approximate solution methods
* Semi-gradient methods
* On-policy and off-policy methods

* The deadly triad; how to evade or survive it

e Miscellany and closing remarks



You are the reinforcement learner!
(interactive demo)

Optimal policy True model of the world
(deterministic)

State Action
+10,

100%
A— 2

B— 1 +40,80% | P

+20,80%



] Howard, 1960
The Environment:

A Finite Markov Decision Process (MDP)

e Discretetime t =1,2,3,...

o A finite set of states . ——10.80%

+10,
100%

e Afinite set of actions

e Afinite set of rewards

+40,20%

+20,80%

e Life is a trajectory:

SRR St7 At7 Rt—|—17 S1.“—|—17 At—|—17 Rt—|—27 5t—|—27 ce

e With arbitrary Markov (stochastic, state-dependent) dynamics:

p(r,s'|s,a) = Prob[RtH =r,Sii1=5 | S =5A; = a}



. e.g. :
Policies

A —— 2

B— 1

e Deterministic policy

a=nm(s

) The number of

deterministic policies

IS exponential in the
number of states

e An agent following a policy

Ar = m(5¢)

e Informally the agent’s goal is to choose each action so as to
maximize the discounted sum of future rewards,

to choose each A; to maximize Rip1 + YReso + Y Rz + -+

e We are searching for a policy



Action-value functions

e An action-value function says how good it is to be in a state,
take an action, and thereafter follow a policy:

ar(s,a) = "3[Rt+1 +YRet2 +7°Ress + - | Se=s,Ac =3, At—l—l:ooNﬂ-}

Action-value function
for the optimal policy and y=0.9

State Action Value
A 1 130.39 Mo,
A 2 133.77
B 1 166.23
B 2 146.23 +20,80%

+40,80% | e




Optimal policies
e Apolicy 7 is optimal if it maximizes the action-value function:
gr.(s,a) = max g-(s,a) = g«(s, a)
e Thus all optimal policies share the same optimal value function
e Given the optimal value function, it is easy to act optimally:

7T>,<(S) — arg max q*(s, a) “greedification”
d

e We say that the optimal policy is greedy with respect to the
optimal value function

e There is always at least one deterministic optimal policy



Part |

Exact Solution Methods
(tabular methods)



Q-learning, the simplest RL algorithm

1.Initialize an array Q(s, a) arbitrarily

2.Choose actions in any way, perhaps based on ), such that all
actions are taken in all states (infinitely often in the limit)

3.0n each time step, change one element of the array:

AQ(St, At) — a(Rt+1 + 7y mfx Q(5t+1, 3) — Q(St, At))

4.1f desired, reduce the step-size parameter o over time

e Theorem: For appropriate choice of 4, ) converges to g, and
its greedy policy to an optimal policy ., (Watkins & Dayan 1992)

e This is kind of amazing — learning long-term optimal behavior
without any model of the environment, for arbitrary MDPs!
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Policy improvement theorem

e Given the value function for any policy :

g-(s, a) for all s, a
e It can always be greedified to obtain a better policy:
77/(5) — arg max q7T(57 3) (7" is not unique)
a

¢ where better means:

gr'(s,a) > qr(s,a) foralls,a

e with equality only if both policies are optimal




The dance of policy and value (Policy lteration)

Any policy evaluates to a unique value

1
W function (soon we will see how to learn it)
Ay
AM which can be greedified to produce a
5 better policy

— evaluate

greedify That in turn evaluates to a value function
ﬂ- ! . [ ] [ ]
3 %} which can in turn be greedified...
A3

eed\’\\l
. == Each policy is strictly better than the
. previous, until eventually both are optimal
A/ . .
Ty —_eval There are no local optima
%% The dance converges in a finite number
Tl

of steps, usually very few



The dance Is very robust

e to Initial conditions

e to delayed and asynchronous updating, as in parallel and distributed
Implementations

e to incomplete evaluation and greedification
updating only some states but not others

updating only part of the way
e to randomization and noise

e In particular, it works if only a single state is updated at a time by a
random amount that is only correct in expectation



The Explore/Exploit dilemma

e You can’t do the action that you think is best all the time
because you will miss out big—forever—if you are wrong

to find the real best action, you must explore them all...an
infinite number of times!

e You also can’t explore all the time

because then you would never get any advantage of your
learning

e Thus you must both explore and exploit, but neither to excess.
What is the right balance?

How did Q-learning escape the dilemma?



2.Choose actions in any way, perhaps based on ), such that all
actions are taken in all states (infinitely often in the limit)



Bootstrapping

e The key i
all tempo

e Updating

dea underlying both dynamic programming (DP) and
ral-difference (TD) learning

an estimate from an estimate, a guess from a guess

e Based on the Bellman expectation equation:

gr(s,a)=E

— |

— )

Rt—l—l - /th—I-Q T fyth%—?) + - | St:S7 At:aa At+1:OON7T:|

e Or the Be

q*(57 a) — 4:

Rit1 + vqr(St+1, Ars1) ‘ StZS,AtZQ,AHlNW}

Iman optimality equation:

Rt—l—l —|-’Ym5}x q*(5t+1>3/) ‘ St:stt:ai|
_ a



Q-learning is off-policy learning

e Off-policy learning is learning about the value of a policy other
than the policy being used to generate the trajectory

e Q-learning learns about the value of its deterministic greedy
policy —which gradually become optimal—from data while
behaving in a more exploratory manner

thus Q-learning is off-policy

and this is essential to its strategy for escaping the explore/
exploit dilemma

e Some terminology
the target policy is the policy being learned about
the behavior policy is the policy generating the trajectory data
on-policy learning is when the two policies are the same



Part |

Approximate Solution Methods
(function approximation)



So, RL finds optimal policies for arbitrary environments, if the
value functions and policies can be exactly represented in
tables

But the real world is too large and complex for tables
Will RL work with approximations?

Will RL work with function approximators?



Function approximation

e Represent the action-value function by a parameterized
function approximator with parameter 6

6](57 8, 6) ~ q*(57 3)

e The approximator could be a deep neural network, with the
weights being the parameter

or simply a linear weighting of features (the most pressing
theoretical problems are all best addressed in this setting)

e Function approximation is a powerful concept, e.g., subsuming
much of the problem of hidden state

e Forlarge applications, it is important that all computations
scale linearly with the number of parameters



Does Q-learning work with function
approximation?

e Yes, there is a obvious generalization of Q-learning to function
approximation (Watkins 1989)

e Often, it works well

e But there are counterexamples

simple examples where the parameters diverge to infinity

even for linear function approximation

e We could get by, but something is not right, there is something,
probably many things, that we are not understanding



Semi-gradient Q-learning (Watkins 1989)

e Consider the following objective function, based on the
Bellman optimality equation:

2
L(g) = I (Rt-l-l -+ Y maaX @(5t+17 d. 0) o a(Sta At7 6)

—_——
target

e The target here depends on the parameter, but if we ignore
that dependence when taking the derivative, then we get a
semi-gradient Q-learning update:

aa(sta At7 Ht)

Al = O‘(Rtﬂ + v max§(Se+1,a,0¢) — (S, At Ht)) 00
3 t



Semi-gradient Sarsa (Rummery 1994, Sutton 1988)

e Consider instead an objective function based on the Bellman
expectation equation:

2
L(H) = I (Rt+1 = /yé\l(st—l—la At—|-17 9) - é\l(sta At7 9)
#

target

e Again the target depends on the parameter, and again we
ignore that dependence when taking the derivative, this time to
get the semi-gradient Sarsa update:

8&(51.“7 At7 Ht)

NG, — 04<Rt+1 +7G(St11, Att1,0:) — G(St, Ar, Hf)) 50
t

e This is an on-policy algorithm: it approximates g, not g« ;
thus 7 should be near greedy, typically it is e-greedy



Why is it called Sarsa?

e ltis the only learning update that uses exactly these five things
from the trajectory:

oo Sty Ay Rey1, Stev1, A, - -

e Sarsa is equivalent to the TD(0) algorithm (Sutton 1988) when
applied to state-action pairs rather than to states

What is an e-greedy policy?

e An e-greedy policy is a stochastic policy that is usually greedy,
but with small probability € instead selects an action at random



As an on-policy method, Semi-gradient
Sarsa has good convergence properties

e If the function approximator is linear, it is

guaranteed convergent for prediction (fixed target policy)
(Sutton 1988, Dayan 1992, Tsitsiklis & Van Roy 1997)

guaranteed non-divergent for control, with bounded error
(though may “chatter” —Gordon 1995)

e For general non-linear function approximation, there is one
known counterexample, but it is very artificial and contrived

e On-policy methods typically perform better than off-policy
methods, but find poorer policies



Cliff-walking example (on-policy vs off-policy)

Actions

S

T h e

Cliff

0,

safe path

optimal path



Cliff-walking example (on-policy vs off-policy)

- safe path

- optimal path

S

The Cliff G

v/

Sarsa (on-policy)

M both algorithms
are e— d
f /\M \d&u\/ V\J \/V\”V\ /N | e EmIreedy

% £=0.1
Q-learning (off-policy) .

~25-
Reward _s0-
per
epsiode
~75-
~100
0

| | 1 |
100 200 300 400 500
Episodes



‘Mountain Car ‘Demo

Goal

* Linear function
approximation

 Coarse-coded features
of state (tile coding,
CMAC)

]Gravity wins

Moore 1990, Sutton 1996



Acrobot Demo, Sarsa(A=0.9)
Episode 6




Acrobot Demo, Sarsa(A=0.9)
Episode 40+




RoboCup soccer keepaway
Stone, Sutton & Kuhlmann, 2005




Random

Learned

Hand-coded

Ntone. Sutton & Kuhlmann., 200



How Is the state encoded?
In 13 continuous state variables

11 distances among
the players, ball,
and the center of
the field

2 angles to takers
along passing lanes




The Feature-Construction Pipeline

N "
- , > ACTIon

Sparse, coarse, |. Linear > val
tile coding .| map 6 , values

/13con‘rinuous
state variables B

Huge binary feature vector
(about 400 1's and 40,000 O's)

Full
soccer




But let's return to the bad news,
the problem of instability with
semi-gradient Q-learning




What causes the problem of instability?

e [t has nothing to do with learning or sampling
Even dynamic programming, the classical solution method

for known MDPs, suffers from divergence with function
approximation

¢ It has nothing to do with exploration, greedification, or control

Even policy evaluation alone can diverge

e It has nothing to do with complex non-linear approximators

Even simple linear approximators can produce instability



The deadly triad

e The risk of divergence arises whenever we combine three things:

1. Function approximation

significantly generalizing from large numbers of examples

2. Bootstrapping

learning value estimates from other value estimates,
as in dynamic programming and temporal-difference learning

3. Off-policy learning  (Why is dynamic programming off-policy?)

learning about a policy from data not due to that policy,
as in Q-learning, where we learn about the greedy policy from
data with a necessarily more exploratory policy

¢ Any two without the third is ok



Can we do without bootstrapping?

e Bootstrapping is critical to the computational efficiency of DP
e Bootstrapping is critical to the data efficiency of TD methods

e On the other hand, bootstrapping introduces bias, which harms
the asymptotic performance of approximate methods



Can we do without bootstrapping?

)

)

@

Bootstrapping is critical to the computational efficiency of DP
Bootstrapping is critical to the data efficiency of TD methods

On the other hand, bootstrapping introduces bias, which harms
the asymptotic performance of approximate methods

The degree of bootstrapping can be finely controlled via the A
parameter, from A=0 (full bootstrapping) to A=1 (no bootstrapping)

For the naive loss:

£(0) = | (4:(50 ) ~ (5.4, 0)) "

semi-gradient Sarsa(A) converges to a fixpoint fs,,.., Where

1 —~yA
L(HSarsa) < ! mmL(e) Tsitsiklis & Van Roy 1997

1—~ o
— A=1 is best!?




4 examples of the effect of bootstrapping

suggest that A=1 (no bootstrapping) is a very poor choice

MOUNTAIN CAR RANDOM WALK
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Other ways to survive the deadly triad

e Use high A. Use good features

e Recent results suggest that replay and more stable targets (e.g., Double
Q-learning, van Hasselt 2010) may help, but it is too soon to be sure

e Use least-squares methods like off-policy LSTD(A) (Yu 2010, Mahmood et
al. 2015). Such methods (Bradtke & Barto 1996, Boyan 2000) easily
survive the triad, but their computational costs scale with the square of the
number of parameters

e Try the new true-gradient RL methods (Gradient-TD and proximal-gradient-
TD) developed by Maei (2011) and Mahadevan (2015) et al. These seem
to me to be the best attempts to make TD methods with the robust
convergence properties of stochastic gradient descent. Residual gradient
methods (Baird 1999) are also true gradient methods, but optimize a poor
objective, or can’t learn purely from data (double sampling). These and
other methods based on the Bellman error/residual are not recommended

e Try the even newer Emphatic-TD methods (Sutton, White & Mahmood
2015, Yu 2015). These semi-gradient methods attain stability through an
extension of the early on-policy theorems



Outline

e Introduction to RL successes and challenges
e The formal problem: Finite Markov decision processes
e Part |: Exact solution methods and core theoretical ideas

e Part Ill: Approximate solution methods
* Semi-gradient methods
* On-policy and off-policy methods

* The deadly triad; how to evade or survive it

=3 ¢ Miscellany and closing remarks



The many dimensions of RL

¢ Problems
prediction vs control

MDPs vs Bandits (one state, non-sequential)

e Methods
Tabular vs function approximation
On-policy vs off-policy
Bootstrapping vs Monte Carlo (unified by eligibility traces)
Model-based vs model-free

Value-based vs policy-based

And yet there is an amazing unity and convergence of methods



Policy-gradient actor-critic methods

state

hN
\ .
> Policy
\
Actor
Critic
/
> Valu.e
Function
/1
reward

D
error

Environment

action

Policy is explicitly represented
with its own parameters
iIndependent of any value
function

Policy parameters are updated
by stochastic gradient ascent in
a performance measure such as
average reward per step

A state-value function (critic) is
optional but can significantly
reduce variance

Good convergence properties
(on-policy)



Why approximate policies rather than values?

e In many problems, the policy is simpler than the value function

e In many problems, the optimal policy is stochastic

e.g., bluffing, POMDPs
e To enable smoother change in policies
e To avoid a search on every step (the max)

e To better relate to biology



We should never discount
when optimizing approximate policies!

It breaks the definition of an optimal policy

With approximation, the optimal policy is no
longer representable

There is no way to rank the remaining policies
Different policies will be best in different states

Instead, you must say what states you care
about

Or else use average reward
(which you should probably do anyway)



Model-based reinforcement learning

e Learn a model of the environment’s transition dynamics
p(r,s'|s,a) =~ p(r,s'|s,a)
e Use it to generate simulated trajectories

e Apply RL methods to the simulated trajectories, as if they had
really happened, to learn an action-value function and policy

e Can be intermixed with direct RL



Model-based RL: GridWorld Example

+ + + + + + +
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Andrew Ng, Adam Coates, Pieter Abbeel, et al., Stanford Universit



Eligibility traces

e An elegant unification of bootstrapping and Monte Carlo (non-
bootstrapping) methods

e A key algorithmic innovation that greatly reduces computational
complexity in multi-step prediction learning; its most important
advantages have nothing to do with bootstrapping or control

e Necessary to extend RL beyond discrete time steps that just
happen to be nicely aligned with the world’s causal dynamics

e One of the most algorithmically intense topics in RL

interacts strongly with off-policy learning via importance
sampling, and concomitant struggles to reduce variance



Temporal abstraction in RL

e Function approximation abstracts over state, but we need also
to abstract over time

e There are several approaches, including the framework of
options—macro-actions of extended and variable duration that
can nevertheless interoperate with primitive actions in DP
planning methods and TD learning methods

e The problems of temporal abstraction can be divided into three
classes, increasing in difficulty:

representing temporal abstractions (e.g., by options)
learning temporal abstractions (e.g., by off-policy methods)

discovering temporal abstractions and selecting among them



Conclusion

e Reinforcement learning is a big topic, with a long history, an
elegant theoretical core, novel algorithms, many open
problems, and vast unexplored territories

e RL can be viewed as a microcosm of the whole Al problem,
including planning, acting, learning, perception, world
modeling, even knowledge representation

e Yet, even so, it can be reduced to small steps on each of
which measurable progress can be made

e RL fits well into the longest mega-trend in Al, that towards
turning more of the work over to the machine

e Realistic, ambitious, pragmatic



Thank you for your attention
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