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Reinforcement learning

A new body of theory and algorithms for 
prediction and optimal control

Developed in machine learning and operations 
research (also studied independently in 
psychology and neuroscience)

Enables approximate solution of much larger 
problems than is possible with classical methods

Also known as “neuro-dynamic programming” 
and “approximate dynamic programming



Reinforcement learning

Learning a control law from interactions 
with the system or a model of the system

Key technical ideas:

Generality of problem formulation

Learning from sample system trajectories



Generality of problem 
formulation

Sequential decision-making

Optimal control with general objective

Arbitrary non-linear, stochastic dynamics

Markov decision processes (MDPs)

Incomplete knowledge of dynamics

MIMO



Learning from sample 
system trajectories

Also known as “Monte Carlo methods” or 
“optimization from simulations”

Approximation strategy with good scaling 
properties

Dates to the 1950s and 1960s

The new idea is to combine sampling with 
dynamic programming ideas — Markov 
state and the principle of optimality 



RL has a very wide 
range of applications

• Helicopter auto-pilots

• Robots, RoboCup soccer

• Game-playing (chess, 
checkers, backgammon, 
RPGs, tetris, Go…)

• Dialog management

• Resource scheduling

• Inventory management

• Marketing

• Logistics 

• Dynamic channel 
assignment

• Anomaly detection

• Visual search

• Queue management

• Real-time load balancing

• Power saving appliances

• ...



  

“Autonomous helicopter flight
via Reinforcement Learning”

Ng (Stanford), Kim, Jordan, & Sastry (UC Berkeley) 2004



  Peter Abbeel



  

Devilsticking

Finnegan Southey
University of Alberta

Stefan Schaal & Chris Atkeson
Univ. of Southern California

“Model-based Reinforcement
Learning of Devilsticking”



Applications in the 
Power Systems Industry

The power systems industry faces a 
multitude of control problems

These can be roughly categorized according 
to time scale

100s of research papers on applications of 
RL to power systems



Case study in RL and PS

Offline design of a dynamic brake 
controller

Ernst, Glavic & Wehenkel, IEEE Trans. on Power Systems, 2004



Task domain 

Four-generator power system (simulated)

Learn control law for applying brake

ERNST et al.: POWER SYSTEMS STABILITY CONTROL: REINFORCEMENT LEARNING FRAMEWORK 431

(16)

(17)

where .

VI. DESCRIPTION OF THE TEST POWER SYSTEM MODEL

To illustrate capabilities of the proposed framework to control
power system stability, we make use of the four-machine power
system model described in Fig. 3. Its characteristics are mainly
inspired from [1]. All the machines are modeled with a detailed
generator model, slow direct current exciter, automatic voltage
regulator (AVR), and speed regulator. The loads are modeled
as constant current (active part) and constant impedance (reac-
tive part). When the system operates in steady-state conditions,
the generators G1, G2 (hydro) and G3, G4 (thermal) produce
approximately the same active powers (700 MW) and the two
loads L7, L10 consume respectively 990 and 1790 MW. Below
we present simulation results obtained by applying RL to two
problems: dynamic brake control in an offline mode and TCSC
control in an online mode.

VII. OFF-LINE DESIGN OF A DYNAMIC BRAKE CONTROLLER

The agent that controls the dynamic brake has a threefold
objective: to damp large electromechanical oscillations, to
avoid the loss of synchronism between the generators when a
severe incident occurs, and to limit the time the dynamic brake
is switched on. The resistive brake (RB) is located at bus 6
(Fig. 3) and sized as on a 100 MVA base
(500 MW). This is a reasonable value in view of the fact that a
1400 MW braking resistor is presently in use [1], [5].

A. Pseudo-State and Reward Definition

The control scheme we propose assumes that the system can
be decomposed into two areas (identified by GM1 and GM2 in
Fig. 3) such that only the relative motion of these two areas
provides interesting information, both to decide control actions
(pseudo-state definition) and to measure performance (reward
definition). The 60-dimensional state space of the system is thus
a priori reduced to a 2-dimensional signal composed of relative
angle and relative speed of the two groups of machines. The
pseudo-state at time is thus represented as:

(18)

where and are equivalent angle and speed [17].3
The control objective of the agent is defined by the discount

factor and the reward function. We define the reward function
as follows:

if
if

where the (0 meaning that the brake is switched off
and 1 that it is switched on) and where determines how much

3The determination of and requires the knowledge of the angle and
the speed of each generator. These variables can be either measured directly or
estimated, but we neglect transmission delays and measurement errors in our
study.

Fig. 3. A four-machine power system.

we penalize the fact that the brake is on ( in the simula-
tions reported below). With this criterion, large electro-mechan-
ical oscillations correspond to large negative rewards. Further-
more, to strongly penalize unstable operation, a very negative
reward ( 1000) is obtained when the system has lost synchro-
nism (we consider this to be the case when is greater than

). When the loss of stability is observed a terminal state
is reached and the algorithms stop interacting with the system
until they are reinitialized.

The sampling period is chosen equal to 100 ms which means
that data is acquired and the value of the control could change
every 100 ms. The discount factor of the return computation
has been fixed to 0.95, which corresponds to a 90% discount
after about 4.5 seconds of real-time.

B. Learning Scenario Description

The RL algorithm is used to learn a closed-loop control
law able to avoid loss of synchronism and damp large oscilla-
tions. Since combinations of various pre-fault configurations
(topology and operating point) and fault clearing schemes may
lead to a variety of post-fault configurations, we need to check
the robustness of the control law obtained after training. Thus,
although we will realize the learning by using always the same
configuration, after convergence of the RL algorithm we will
assess the resulting control law robustness on other scenarios
corresponding to configurations different from the one used for
learning.

The learning period is partitioned into different scenarios.
Each scenario starts with the power system being at rest and
is such that at 10 s a short-circuit near bus 10 occurs. The fault
duration is chosen at random in the interval [250 350] ms, and
the fault is self-cleared. The simulation then proceeds in the
post-fault configuration until either instability is detected or else
the time is greater than 60 s. Since we want to train the controller
in the post-fault configuration, no learning (i.e. no model update
and no -function update) is done in the during fault period. A
total number of 1000 learning scenarios are generated, out of
which 163 were unstable.

C. Algorithm Parameters and Learned Control Policy

During learning the -greedy factor is set to 0.1 which corre-
sponds to a relatively high exploration rate, liable to accelerate
convergence speed. The pseudo-state space is discretized in a
rectangular and uniform way, with a discretization step of 0.18
for the angle and of 0.75 for the speed.

Fig. 4(a) shows the control law obtained in the ( , ) plane
after 100 scenarios have been presented to the RL algorithm.

500 MW resistive 
brake here

Short circuit 
introduced here

990MW 1790MW

4 700MW
generators



RL approach
State space reduced from 60 dimensions 
to 2 (relative angle and speed of the two 
groups of machines)

Introduce penalties (negative rewards) for 
deviation of speed from zero, for applying 
the brake, and for loss of stability

Learn discretized model of system

Approximately solve system model for 
optimal value function and control law
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Fig. 4. The learned control strategy. is expressed in rad and in rad/s.

Fig. 5. Evolution of , and for two different fault
scenarios. The fault is applied at . The control strategy used is the one
represented on Fig. 4(b). The dashed curve represents the evolution that
would have been obtained in the case of an uncontrolled system .

On this figure, each tile corresponds to a discretized state. Note
that only the tiles that have been visited during the learning are
represented. The dark tiles correspond to states where the con-
trol value is 1 (brake on) and the light ones to the opposite case.
We observe that after 100 scenarios, the control law still seems
rather erratic, which is due to the fact the RL algorithm has not
yet converged. After 1000 scenarios (Fig. 4(b)), one can ob-
serve that an organized structure has appeared in the way the
tiles are distributed. At this stage, additional learning can only
bring minor changes to the learned control law.

D. Effectiveness and Robustness of the Learned Control Policy

When the uncontrolled system is subjected to the fault sce-
nario used during the learning (a self-cleared short-circuit at bus
10), the maximum fault duration it can withstand without losing
stability is 215 ms. On the other hand, when the dynamic brake
is used with the control law represented on Fig. 4(b), the system
is stable even for a 350 ms fault duration (the evolution of and

is represented on Fig. 5(a)).

Fig. 6. Electrical power oscillations (MW) occurring when is constant
and equal to .

To assess the control law robustness with respect to a fault
scenario not met during the learning we consider the sequence of
events that consists in applying a fault near bus 7 and in clearing
it by opening one of the two lines connecting bus 7 to bus 10.
The maximum fault duration the uncontrolled system can with-
stand when subjected to such a fault scenario is 141 ms while it
is 252 ms for the controlled system, which illustrates the con-
trol law robustness. The corresponding behavior (controlled vs
uncontrolled) is shown on Fig. 5(b).

VIII. ONLINE LEARNING TO CONTROL A TCSC

In this section we focus on how to control by means of RL
algorithms a TCSC device in order to damp power system os-
cillations, a phenomenon becoming even more important with
the growth of extensive power systems and especially with the
interconnection of these systems with ties of limited capacity.
The TCSC is considered as a variable reactance placed in series
with a transmission line (line 7–10 in Fig. 3). The reactance of
the TCSC, denoted by , responds to the first order dif-
ferential equation:

(19)

where represents the FACTS reactance reference and
where has been chosen, in accordance with the
technical specifications of such a FACTS device [18], equal to
60 ms. The control variable for this system is and it is
supposed to belong to the interval . A value of

for corresponds approximately to a 30%
compensation of the line on which the FACTS is installed. Our
aim is to control this device by using only locally available
measurements and to show how the RL algorithm would
operate in online mode, in particular how it could adapt the
control strategy to changing operating conditions.

To make these simulations more interesting, we start by
modifying the gains of the machines AVR in order to yield a
system which is originally negatively damped. Fig. 6 shows
under these conditions the power flowing through the line 7–10
when ; it corresponds to a stable limit cycle
with amplitude governed by the excitation current limitation.

A. State and Reward Definition

In order to enable the proper operation of the RL algorithm
in online mode all the quantities used by this algorithm must
be defined on the basis of real-time measurements that are used
as inputs to the controller and to the learning agent. Since we
want a local control algorithm we need to use measurements
available close to the location of the FACTS device. We chose a

After 100 faults After 1000 faults

(relative angle)

(relative speed)

State
space

Dark cells mean 
apply brake in 

the state
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stand when subjected to such a fault scenario is 141 ms while it
is 252 ms for the controlled system, which illustrates the con-
trol law robustness. The corresponding behavior (controlled vs
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In this section we focus on how to control by means of RL
algorithms a TCSC device in order to damp power system os-
cillations, a phenomenon becoming even more important with
the growth of extensive power systems and especially with the
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with a transmission line (line 7–10 in Fig. 3). The reactance of
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where represents the FACTS reactance reference and
where has been chosen, in accordance with the
technical specifications of such a FACTS device [18], equal to
60 ms. The control variable for this system is and it is
supposed to belong to the interval . A value of

for corresponds approximately to a 30%
compensation of the line on which the FACTS is installed. Our
aim is to control this device by using only locally available
measurements and to show how the RL algorithm would
operate in online mode, in particular how it could adapt the
control strategy to changing operating conditions.

To make these simulations more interesting, we start by
modifying the gains of the machines AVR in order to yield a
system which is originally negatively damped. Fig. 6 shows
under these conditions the power flowing through the line 7–10
when ; it corresponds to a stable limit cycle
with amplitude governed by the excitation current limitation.

A. State and Reward Definition

In order to enable the proper operation of the RL algorithm
in online mode all the quantities used by this algorithm must
be defined on the basis of real-time measurements that are used
as inputs to the controller and to the learning agent. Since we
want a local control algorithm we need to use measurements
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Conclusions from case 
study

A specialized non-linear controller was 
created automatically

Savings in engineering/design time

Keys to application success:

Simplified state space

Domain is tolerant of small errors and 
imperfection in the controller

Domain involves sequential decision making



Apps of RL to Power 
Systems by time scale

Tens of milliseconds (protection relays)

Seconds (frequency and voltage control, 
damping)

Minutes to hours (generation scheduling, load 
shedding, unit commitment, market bidding)

Days to months (maintenance scheduling, 
longer-term generation scheduling)

Years (investment, market rules)



Apps of RL to Power 
Systems by time scale

Tens of milliseconds (protection relays)

Seconds (frequency and voltage control, 
damping)

Minutes to hours (generation scheduling, load 
shedding, unit commitment, market bidding)

Days to months (maintenance scheduling, 
longer-term generation scheduling)

Years (investment, market rules)
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Overall conclusion 

The Power Systems Industry faces a 
multitude of control problems at time 
scales from milliseconds to years

For many of these, RL methods are 
applicable and sensible

The RLAI group here would be happy to 
provide some guidance in exploring 
possible applications and research projects


