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Reinforcement learning

® A new body of theory and algorithms for
prediction and optimal control

® Developed in machine learning and operations
research (also studied independently in
psychology and neuroscience)

® Enables approximate solution of much larger
problems than is possible with classical methods

® Also known as “neuro-dynamic programming”
and “approximate dynamic programming



Reinforcement learning

® Learning a control law from interactions
with the system or a model of the system

® Key technical ideas:

® Generadality of problem formulation

® Learning from sample system trajectories




Generality of problem
formulation

® Sequential decision-making
® Optimal control with general objective

® Arbitrary non-linear, stochastic dynamics

® Markov decision processes (MDPs)

® Incomplete knowledge of dynamics

® MIMO



Learning from sample
system trajectories

® Also known as “Monte Carlo methods” or
“optimization from simulations”

® Approximation strategy with good scaling
properties

® Dates to the 1950s and 1960s

® The new idea is to combine sampling with
dynamic programming ideas — Markov
state and the principle of optimality



RL has a very wide
range of applications

Helicopter auto-pilots
Robots, RoboCup soccer

Game-playing (chess,
checkers, backgammon,

RPGs, tetris, Go...)
Dialog management
Resource scheduling
Inventory management

Marketing

® |ogistics

Dynamic channel
assignment

Anomaly detection
Visual search

Queue management
Real-time load balancing

Power saving appliances



“Autonomous helicopter flight

via Reinforcement Learning™
Ng (Stanford), Kim, Jordan, & Sastry (UC Berkeley) 2004
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Devilsticking

Tnal 1

Finnegan Southey Stetan Schaal & Chris Atkeson

University of Alberta Univ. of Southern California

“Model-based Reinforcement
Learning of Devilsticking”



Applications in the
Power Systems Industry

® The power systems industry faces a
multitude of control problems

® These can be roughly categorized according
to time scale

® 100s of research papers on applications of
RL to power systems



Case study in RL and PS

Offline design of a dynamic brake
controller

Ernst, Glavic & Wehenkel, IEEE Trans. on Power Systems, 2004



Task domain

® Four-generator power system (simulated)
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® Learn control law for applying brake



RL approach

® State space reduced from 60 dimensions
to 2 (relative angle and speed of the two
groups of machines)

® Introduce penalties (negative rewards) for
deviation of speed from zero, for applying
the brake, and for loss of stability

® Learn discretized model of system

® Approximately solve system model for
optimal value function and control law



RL results:
Learned control law
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RL results: System behavior
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Conclusions from case
study

® A specialized non-linear controller was
created automatically

® Savings in engineering/design time
® Keys to application success:

® Simplified state space

® Domain is tolerant of small errors and
imperfection in the controller

® Domain involves sequential decision making



Apps of RL to Power
Systems by time scale

® Tens of milliseconds (protection relays)

® Seconds (frequency and voltage control,
damping)

@® Minutes to hours (generation scheduling, load
shedding, unit commitment, market bidding)

® Days to months (maintenance scheduling,
longer-term generation scheduling)

® Years (investment, market rules)



Apps of RL to Power
Systems by time scale

™ @ Seconds (frequency and voltage control,
damping)

s<*” @ Minutes to hours (generation scheduling, load
shedding, unit commitment, market bidding)

® Years (investment, market rules)



Overall conclusion

® The Power Systems Industry faces a
multitude of control problems at time
scales from milliseconds to years

® For many of these, RL methods are
applicable and sensible

® The RLAI group here would be happy to
provide some guidance in exploring
possible applications and research projects



