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There are no authorities in science

• Don’t be impressed by what you don’t understand

• Don’t try to impress others by what they don’t understand

• You should be brave and ambitious… 
                      ...but also humble and transparent

• Humble before the great task — understanding the mind 
• nature is subtle but not devious 
• it is waiting to be discovered… if we can only see it

Your thoughts are, potentially, of great value



How can you train yourself to
think carefully & productively?
 
The best way is to write for 
yourself

(and discuss with others)

They say it takes 10,000 hours 

to become an expert at anything


This could well be true

for thinking about thinking


Are you willing to do the work?


It is not super difficult, 

but you do have to show up, day after day 45 years of 


my notebooks



A prose poem for your notebook

To write is to begin to think.


To write in a special place, 


      —a book such as this— 


is to honor your thoughts


and to help them build, 


one upon the other.




When you get stuck, persist
• In thinking on important questions, you will often reach an apparent dead end, 

with no where to go 

• Here are some techniques for moving forward again: 

• Define your terms 

• Go multiple (What are some of the conceivable answers?) 

• Go meta (What would an answer look like? What properties would it have?) 

• Retreat (to a clearer question that you can make progress on)



What is intelligence?

• “Intelligence is the most powerful phenomenon in the universe”  
                                                                       —Ray Kurzweil

• “Intelligence is the computational part of the ability  
to achieve goals in the world”  
                                                                       —John McCarthy

• “Intelligence is in the eye of the beholder”  
                                                    



The predictive knowledge hypothesis

“Almost all knowledge of the world can be well thought of as  
statistics (predictions) about the agent’s future data stream”

Exceptions: 
• mathematical knowledge
• knowledge of what to do (policies)
• features
• memories of the past



The most important insight you will ever contribute

• Is probably something that you already know

• Is probably something that is obvious to you

• so obvious that you can’t see it!



Sometimes the obvious is the hardest to see.
For example:

• The discovery of gravity, by Isaac Newton

• The discovery that people are animals, 
evolved from animals, by Charles Darwin 

• The discovery of air/vacuum 

• The discovery of reinforcement learning by 
Harry Klopf in the 1970s Harry Klopf

1941–1997 



Are there obvious things that we struggle to see now?
• No animal does supervised learning 

• No mind generates images or videos 

• Neural networks are not in any meaningful sense “neural” 

• People are machines 

• The purpose of life is pleasure (and pain) 

• The world is much more complex than any mind that tries to understand it 

• therefore, a prior distribution on the world could never be reasonable 

• Mind is computational, and computation is increasing exponentially 

• Human input doesn’t scale; the only scalable methods are search and learning



More advice

• Experience is the data of AI

• Don’t ask the agent to achieve what it can’t measure

• Don't ask the agent to know what it can’t verify 

• Approximate the solution, not the problem

• Take the agent’s point of view

• Set measurable goals for the subparts of an agent

• Work by orthogonal dimensions. Work issue by issue

• Work on ideas, not software



Outline

• Developing your own research thoughts 

• A simple trick “completing the square” for doing RL research 

• The kind of RL research that I am doing now 

• A very different kind of research opportunity: AI & Society



The many dimensions of RL
Increasing in difficulty to the right →    

Problem dimensions

• Prediction — control 

• Bandits — MDPs

• Discounted — episodic — average reward

• Fully observable — partially observable

• Empirical results — convergence theory— rate theory

Method dimensions

• Function approximation: tabular — state aggregation — linear — nonlinear 

• Model-free — model-based

• On-policy — off-policy (Gradient-TD — Emphatic-TD — Tree backup — Q(!) — V-trace)

• Bootstrapping: Monte Carlo — temporal difference learning

• Unified treatment by n-step methods — eligibility traces

• Trace type: Accumulating—replace—dutch—true online

• Value-based — policy-based

• State values — action values

• Batch — online

• Options

• Distributional

• Double and triple methods

• Interest and emphasis

The frontier??
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The Machine Learning landscape

The old view

• Supervised learning

• Unsupervised learning

• Reinforcement learning

A possible new view

• Prediction learning

• Control learning

• Representation learning

• Integrated agent architectures



The Reinforcement Learning Landscape

In Core RL, we learn

Value functions

Policies

Next, we need to learn

State features

Skills

Models of the world

Subproblems



Animals pursue subproblems that are not the main problem



Babies pursue subproblems that are not the main problem



Babies pursue subproblems that are not the main problem



There is a long history in AI/RL of looking at subproblems 
that are nominally distinct from the main problem

• Curiosity in RL (Schmidhuber 1991–) 
• Multiple learning tasks improves generalization  

(Caruana 1993-97, Baxter 1997) 
• Large numbers of off-policy RL tasks  

as learning a model of the world  
(Sutton et al. 1995, 1999, 2011) 

• Skills (options) to achieve subgoals  
(Many 1999–) 

• Intrinsic motivation in RL  
(Barto, Singh, Simsek, Oudeyer, 2005–) 

• Auxiliary RL tasks improve generalization  
(Jaderberg et al. 2014) 

• Here: Oudeyer, Hyrutyunyan, Xia, Foster, 
Mattar, McIlrath, Dabney, Hoffman…

• Somewhat settled issues about subproblems: 
• Subproblems are a reward signal 

and possibly a “terminal” value (subgoal) 
• The solution to a subproblem is an option 

(a policy and a way of terminating) 

• Key open questions about subproblems: 
1. What should the subproblems be? 
2. Where do the subproblems come from? 
3. How do the subproblems help the main problem? 

• Perhaps we need both: 
• the pursuit of particular, arbitrary subproblems, and 
• the pursuit of learning progress (exploration)



How can subproblems help the main problem?
• by shaping the state representation  

• feature representations that are good for the subproblem may also be good for the 
main problem (e.g., distributional RL, auxiliary tasks) 

• by shaping behavior (making it more coherent or more exploratory) 

• subproblems→options, which are then executed to termination 
(e.g., the option-critic, termination critic) 

• by enabling planning at a higher level 

• subproblems→options→transition models  
which are then used in planning (e.g., hierarchical Dyna, Sorg & Singh) 

• planning helps when states change their values 
(e.g., Airports, Moore and Atkeson, All-goals updating, Kaelbling)



• One weight vector, the permanent memory, is learned in the usual way, 
say by linear TD(0): 

the step size     is chosen to be small, so that the permanent weights 
converge slowly to the best static approximate value function 

• Another weight vector, the transient memory, adds to the permanent 
weights and learns faster, filling in what the permanent weights miss: 

where            . In the long run the transient memory may lose to the 
permanent memory (         ), but on tracking problems it can help

↵̃ > ↵

Permanent and transient memories 
in value function approximation

wt+1 = wt + ↵
�
Rt+1 + �w>

t xt+1 �w>
t xt

�
xt

Sutton, Koop & Silver, ICML 2007; Silver 2009
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“cascade”



Permanent and transient memories in Go valuation
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Figure 7.2: a) A 1⇥ 1 local shape feature with a central black stone. This feature acquires a strong
positive value in the long-term memory. b) In this position, move b is the winning move. Using only
1⇥1 local shape features, the long-term memory suggests that move a should be played. The short-
term memory will quickly learn to correct this misevaluation, reducing the value of a and increasing
the value of b. c) A 3 ⇥ 3 local shape feature making two eyes in the corner. This feature acquires
a positive value in the long-term memory. d) Black to play, using Chinese rules, move a is now the
winning move. Using 3⇥ 3 features, the long-term memory suggests move b, believing this to be a
good shape in general. However, the short-term memory quickly realises that move b is redundant
in this context (black already has two eyes) and learns to play the winning move at a.

7.4 Dyna-2 in Computer Go

In general, it may be desirable for the long and short-term memories to utilise different features, that

are best suited to representing either general or local knowledge. In our Computer Go experiments,

we focus our attention on the simpler case where both vectors of features are identical2, � = �.

We have already seen that local shape features can be used with temporal-difference learning, to

learn general Go knowledge (see Chapter 5). We have also seen that local shape features can be used

with temporal-difference search, to learn the value of shapes in the current situation (see Chapter 6).

The Dyna-2 architecture lets us combine the advantages of both approaches, by using local shape

features in both the long and short-term memories.

Figure 7.2 gives a very simple illustration of long and short-term memories in 5 ⇥ 5 Go. It is

usually bad for Black to play on the corner intersection, and so long-term memory learns a negative

weight for this feature. However, Figure 7.2 shows a position in which the corner intersection is

the most important point on the board for Black: it makes two eyes and allows the Black stones to

live. By learning about the particular distribution of states arising from this position, the short-term

memory learns a large positive weight for the corner feature, correcting the long-term memory.

We apply Dyna-2 to 9 ⇥ 9 Computer Go using 1 ⇥ 1 to 3 ⇥ 3 local shape features. We use

a self-play model, and default parameters of � = � = 0, ↵ = 0.1/|�(s, a)|, ↵ = 0.1/|�(s, a)|,

✏ = 0, and ✏ = 0.1. We modify the Dyna-2 algorithm slightly to utilise logistic temporal-difference
2We note that in this special case, the Dyna-2 algorithm can be implemented somewhat more efficiently, using just one

memory during search. At the start of each real game, the contents of the short-term memory are initialised to the contents
of the long-term memory, ✓ = ✓. Subsequent searches can then proceed using only the short-term memory, just as in
temporal-difference search (see Algorithm 2).
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Local feature 
with central 
black stone

A strong positive weight 
is learned in the 

permanent memory  
for this feature

Local feature 
with two eyes 
in the corner

A modest positive weight 
is learned in the 

permanent memory  
for this feature

Go positions with two places for black to move. 
The permanent memory prefers move a in both

Move b is winning 
here 

  
The transient 

memory learns 
this

Move a is winning 
here 

The transient 
memory does not 

interfere

Sutton, Koop & Silver, ICML 2007; Silver 2009



Head-to-head comparison on 5x5 Go

On the Role of Tracking in Stationary Environments

Features Tracking beats converging
Black White Total

1⇥ 1 82% 43% 62.5%
2⇥ 2 90% 71% 80.5%
3⇥ 3 93% 80% 86.5%

Table 1. Percentage of 5⇥5 Go games won by the tracking
agent playing against the converging agent when playing
as Black (first to move) and as White.

agent received slightly less experience than the con-
verging agent. We played the tracking and converg-
ing agents against each other to compare their per-
formance. Both agents used an ✏-greedy policy during
self-play training, but a greedy policy to select their ac-
tual moves. The step-size was set to ↵t = 0.1/||x(st)||
for both agents.

The first experiment used only the 1⇥1 features. Each
subsequent experiment included additional features of
increasing complexity, up to 3 ⇥ 3. Every experiment
consisted of 200 games, retraining both agents from
scratch for each game, and alternating colours between
games. In all experiments, the tracking agent won a
substantial majority of the games (Table 1 and Fig-
ure 5) with the advantage being largest for the more
expressive representations.

The simplest representation, using just the 1 ⇥ 1 fea-
tures, demonstrates a clear advantage for tracking over
converging. For example, it is usually bad for Black
to play on the corner intersection, and so the con-
verging agent learns a negative weight for this feature.
However, Figure 6 shows a position in which the cor-
ner intersection is the most important point on the
board for Black: it makes two eyes and allows the
Black stones to live. By learning about the particular
distribution of states arising from this position, the
tracking agent learns a large positive weight for the
corner feature. When playing Black in this position,
the converging agent plays in the central intersection
and loses; whereas the tracking agent plays in the cor-
ner and wins.

As the representation becomes more expressive, the
agent is able to learn more complex patterns and
the performance of both tracking and converging in-
creases. However, the tracking agent is able to ex-
ploit the additional features better than the converg-
ing agent (see Figure 5). For example, the converging
agent now learns that the corner intersection is bad
in general, but good when it occurs in a 3 ⇥ 3 pat-
tern providing two eyes. However, there are still spe-
cial cases where this does not hold. Figure 7 shows a
similar position in which this same corner pattern is

Features Total CPU (minutes)
features Tracking Converging

1⇥ 1 75 3.5 10.1
2⇥ 2 1371 5.7 13.8
3⇥ 3 178518 9.1 22.2

Table 2. Memory and CPU requirements for tracking and
converging agents. The total number of binary features
indicates the memory consumption. The CPU time is
the average training time required to play a complete
game: 250,000 episodes of training for the converging
agent; 10,000 episodes of training per move for the tracking
agent.

Figure 5. Games won by tracking agent against converging
agent, playing 100 games as Black and 100 games as White.

b

a

Figure 6. (Left) A 1⇥ 1 feature with a central black stone.
(Right) With Black to play, move b is the winning move.
Using 1 ⇥ 1 features, the converging agent plays centrally
at a, having learned that this is a good feature in general.
However, the tracking agent learns that Black must play
at b in this particular situation, to make two eyes.

Winning %
for the tracking player

over the converging rlayer

100%

50%

0%
1x1 features 2x2 features 3x3 features

75%

25%

• Converging player uses an extensively 
trained permanent memory to pick moves 

• Tracking player uses the transient and  
permanent memories together 

• The Tracking player was the clear winner 

• The transient memory provides a decisive 
advantage

Different feature representations

Sutton, Koop & Silver, ICML 2007; Silver 2009

It’s good to think that values change!

Winning %
for the tracking player

over the converging player



The world is much more complex than the mind

≫

• The mind is too small to contain 
the exact value function

• There will not be enough weights

• Therefore:
• We must embrace approximation!

• The best approximate value function 
will change even if the world does not

Big world ⇒ apparent non-stationarity  
                ⇒ changing approximate value function



My answers to the three key open questions about subproblems
1. What should the subproblems be? 

Each subproblem should seek to maximize a single state feature  
(then terminate) while respecting the original rewards 

Formally, the subproblem for feature i has the same rewards as the usual problem plus,  
if the option stops at time t, a terminal value of 

2. Where do the subproblems come from? 

Subproblems come from state features! There is one subproblem for each feature  
whose contribution to the value function is highly variable 

3. How do the subproblems help on the main problem? 

The solution to a subproblem is an option that maximizes its feature; 
with this, one can act decisively to achieve that feature  

And one can learn a transition model of that option,  
then plan in large abstract steps of feature achievement, as the values of features change

w>xt + xi
t · Stdev[w̃i]



Summary of this approach to integrated RL agents
• A fully capable RL agent must learn larger things—state features, skills, and 

models—all of which pertain to subproblems 

• State-feature achievement, respecting reward, is a distinctive kind of subproblem 

• that fits well into planning and representation learning 

• Because the world is big, we must approximate it;  

• this means it will appear to change, and we will have to track it 

• this is why planning and generalization make sense 

• The changes in our approximate value function tell us which features should be 
the focus of our representations, subproblems, models, and planning 

• The problems of subproblem selection and of exploration/curiosity may be 
separable; both are needed in a complete AI agent



Outline

• Developing your own research thoughts 

• A simple trick (completing the square) for doing RL research 

• The kind of RL research that I am doing now 

• A very different kind of research opportunity: AI & Society



The coming of AI

• When people finally come to understand the principles of 
intelligence—what it is and how it works—well enough to 
design and create beings as intelligent as ourselves

• A fundamental goal for science, engineering, the humanities, …
for all mankind

• It will change the way we work and play, our sense of self, life, 
and death, the goals we set for ourselves and for our societies

• But it is also of significance beyond our species, beyond history

• It will lead to new beings and new ways of being, things 
inevitably much more powerful than our current selves



AI is driven by the supertrend towards ever-cheaper computation
(Moore’s Law)

adapted from  
Kurzweil AI

This supertrend will 
continue for the 
foreseeable future

Computer 

power / $

Time

Moore’s law proper

2019



AI is the most human-centric of all fields

• It’s all about us 
• understanding us, making us, amplifying us 
• not exactly us, but the essential us 
• and making our lives easier, better (that’s where the $ are) 

• It is as not techie, alien, artificial, as we make it out to be 

• It is us making, or becoming, the next people 

• The next step in the evolving, changing, widening river  
that is ourselves and humankind



Understanding intelligence is surely good, but

• Just understanding intelligence will inevitably lead to ordinary 
humans falling behind 

• because some people will improve themselves 

• because some people will design improved people 

• AI will inevitably lead to new beings and new ways of being 
that are much more powerful than our current selves



Do unto AIs, as you would have them do unto you

• It is often useful to think of people and AIs as similar 

• both are agents with goals,  
which may be compatible or conflicting 

• So many issues then drop away 

• People should not feel entitlement 

• AIs may not want to be slaves



• AI technology will be part of what disrupts existing social and power structures 

• AIs will force us to re-examine our moral and social foundations 

• Continuing trends that are 1000s of years old 

• AI will bring greater diversities of intelligences, both natural and artificial 

• There will be biases against the new and different.  
There will be feelings of entitlement 

• These will be counterproductive and eventually fade away 

• Will we welcome independent AIs? 

• Will we give them a path to joining our society as sovereign persons?

In the long run…



A positive vision of the future
• An open, dynamic, resilient society – peaceful & prosperous 

• With a diverse multiplicity of designs, cultures, values, organizations, 
and sovereign persons of many kinds, both organic and artificial 
• Competing and cooperating 
• With overlapping circles of empathy and support 
• Without feelings of envy or entitlement 

• We should care if our design wins, but not insist on it 

• The rise of greater foresight in the universe may be one of the few things  
that is generally good



Good Luck!

and thank you for your attention


