
personal perspective
• there is a science of mind that is neither natural 

science nor applications technology

• e.g., Marr’s “computational theory” level

• a mind is something more usefully thought of 
in terms of goals than mechanisms

• goals can be well thought of as rewards

• reinforcement learning is the beginning of a 
science of mind

• intrinsic motivation is part of a science of mind
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summary
• a technical breakthrough leading to a new 

family of reinforcement learning algorithms

• temporal-difference (TD) learning with 
approximations is now straightforward

• it is now practical to learn in parallel 
about many predictions at once

• parallel prediction learning may be key to 
understanding mind, brain, and intrinsic 
motivation



knowledge is predictions

• of what will happen

• of what you could cause to happen

• at various time scales

• conditional on actions or courses of action



predictions can be more 
powerful than you think
• not just a “saying before” of what the 

sensory signals will be

• all scientific knowledge can be expressed as 
predictions

• predictions can be about the outcomes of 
extended courses of behavior (options)

• all the little things you know can be well 
thought of as prediction



much of mind 
is about prediction

• perception and state representation can be 
thought of as making predictions

• models the world and cause and effect can be 
thought of in terms of predictions

• planning can be thought of as composing 
predictions to anticipate possible futures, 
and then choosing among them

• learning value functions (and thus much of 
conventional RL) is learning predictions



 

• predictions are the coin of the mental 
realm

• thus, we should be focused on machinery 
for efficiently learning predictions



parallel prediction demons

• we should be able to make and learn lots of 
predictions at once, in parallel

• as in parallel prediction demons

• every demon should be able to learn on 
every step

• this has always been the promise of off-
policy temporal-difference learning



but this promise has 
been unfulfilled

• there has been no practical algorithm for 
parallel prediction learning

• previous methods were too complex 
(LSTD, iLSTD), restricted to table lookup 
(Q-learning), not parallel (Monte Carlo, 
Sarsa), too slow (importance sampling), 
or had weak approximators (averaging)



until now

• now, for the first time, it is practical and 
straightforward to do massive, in parallel, 
prediction learning

• with new gradient-based TD algorithms

• GTD, TDC (NIPS-08, ICML-09, NIPS-09)

• GQ (submitted)

• Actor-critic-option algorithms (in prep)



outline
• Perhaps key to mind is being able to make 

and learn a lot of predictions in parallel, 
which is what TD learning was made for, 
and which we can now finally do, with GQ

• Setting (online prediction learning)

• Watkins’s linear Q(λ)

• GQ inputs and outputs

• The GQ algorithm

• Example uses of GQ; including for IM



Setting



real-time, incremental

• all predictions are made and learned on 
every time step

• 100 times a second

• constant-time computation per step

• constant memory



a continual stream 
of experiential data

• every time step (say 10ms) we receive a new 
sensory observation ot and take an action at

• we also update an agent state representation, st:

• st is whatever the agent uses to pick at, 
i.e., there exist probabilities

• we place no constraints on s, u, or b
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approximation architecture 
is fixed and linear (for now)

• state-action pairs map in a fixed way to feature 
vectors

• which map linearly to scalar predictions

• where the weights,     , are what is learned

• we consider one prediction, and drop the “i”
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Watkins’s Q(λ)



Watkins’s Q(λ) semantics
(what is learned)

Learns an approximation to the optimal action-value function:
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Watkins’s Q(λ) learning rule
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• unsound (may diverge)

• traces frequently cut

• off-policy - learns the optimal policy and values 
independent of the behavior policy

trace decay rate, λ∈[0,1]

step size, α>0



Watkins’s Q(λ) provides a hint 
of the massive generalizations 

that are possible
• you could learn simultaneously about multiple, 

different

• reward functions

• discount rates

• non-greedy target policies

• state-dependent terminations

• you could predicted outcomes as well as rewards



GQ



π : A × S→ [0,1], π∑ (a | s) = 1

β : S→ [0,1]

GQ(λ,π,β,z,r) semantics

• target policy, 

• termination probability, 

• initiation set (set of interest),   

• transient target function, 

• outcome target function, 

• eligibility-trace decay function,  λ : S→ [0,1]

z : S→ℜ

hr : S→ℜ

p
t
≈ Eπ ,β ,λ rt+1 + rt+2

++ r
T
+

z
T

or

wix
T

s
t
,a
t
,T = time of

termination by β
or

truncation by λ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

I : S × A→ [0,1]

option

option
model

r, z

π ,β , I 

action set state set

a



notational shortcuts
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GQ learning rule

• everything is O(#features)

• everything is well-defined and readily available

• similarities to expected Sarsa, with (1-β) in place of
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GQ learning code
void GQlearn(x,xbar,I,ρ,β,z,r,λ) {/* all except xs are scalar */

static double w[n],v[n],e[n];
double α=0.0001,η=1.0,dotux,dotue;
δ = r + β*z + (1-β)*dot(w,xbar) - dot(w,x);
for (i=0;i<n;i++) e[i] = ρ*e[i] + I*x[i];
dotve = dot(v,e);
dotvx = dot(v,x);
for (i=0;i<n;i++) {
   w[i] += α * (δ*e[i] - (1-β)*(1-λ)*dotve*xbar[i]);
   v[i] += α*η * (δ*e[i] - dotvx*x[i]);
   e[i] *= (1-β) * λ;
}

}



theoretical statement
There exists a scalar Bellman-error objective 
function

such that

which guarantees convergence to 
(under step-size conditions)
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Example uses of GQ



what kind of things might 
we do with these demons?
• make everything a reward (for some demon)

• learn an option to achieve it

• learn a detector for the ability to achieve it

• take hand-coded options, learn about their 
outcomes

• learn models of options suitable for planning

• guide behavior by the demons’ learning 
progress (“learning feels good”)



bump anticipators
Continuously predict imminent bumps at various 
time scales under the behavior policy

These 3 predictions could then be added to the 
agent state, used to make decisions

π(a | s) = b(a | s)

β(s) = 0.1      (bump in next 10 steps = 0.1 seconds)

β(s) = 0.02    (bump in next 50 steps = 0.5 seconds)

β(s) = 0.002   (bump in next 500 steps = 5 seconds)

I(s) = 1.0

r(s) = 0

z(s) = accelerometer(s)

λ(s) = 0.9

three 
different

predictions



“near something” detector
Can I get any IR sensor to give a sustained high 
reading without moving very much? 

Add detector d(s) for high IR reading for 0.5 
seconds

Does not need to be run to completion

π(a | s) = 1  if  a = argmax
′a
wix(s, ′a ),  otherwise 0

β(s) = d(s) (+ 0.01 if wheels are moving)

I(s) = 1.0

r(s) = 0

z(s) = d(s)
λ(s) = 0.95



other possibilities

• is there a ball (concave object) present?

• am I stuck? (what would happen to wheel 
motion when torque is applied after/for 
several time steps?)

• can I get the rattle to sound?  How?

• target policies with constant actions may be 
useful



learning a model of an option
For planning we need models of possible courses 
of action (e.g., wall following)

Each such option model is a bunch of predictions 
for the option’s π,β,I:

Predictions whose outcome targets are the 
elements of the agent state:

One more prediction whose transient target 
is           , the deviation of the current real 
reward from the long-term average real reward

This form is necessary and sufficient for planning

r(s)− r

r i(s) = 0, zi(s) = s(i)



intrinsic motivation

• imagine one million prediction demons, all learning 
in parallel

• for various random or cleverly chosen 
options and target functions

• imagine each can measure its learning progress

• use the sum-total learning progress as intrinsic 
reward to direct the behavior policy

• weed and refine the set of demons, then repeat



conclusions
• prediction demons are a powerful language 

for learning and representing knowledge

• prediction demons can learn online, in 
parallel, and computationally efficiently

• they can certainly be used to learn a lot of 
stuff about one’s world

• probably more than any previous AI

• and they can be a powerful, lightweight 
substrate for intrinsic motivation systems



• thank you for your attention


