
personal perspective
• there is a science of mind that is neither natural

science nor applications technology

• e.g., Marr’s “computational theory” level

• a mind is something more usefully thought of
in terms of goals than mechanisms

• goals can be well thought of as rewards

• reinforcement learning is the beginning of a
science of mind

• intrinsic motivation is part of a science of mind

Core Learning Algorithms for
Intrinsically Motivated Agents

Rich Sutton
University of Alberta

with thanks to
Hamid Maei, Csaba Szepesvari, Doina Precup, Shalabh Bhatnagar,

David Silver, Michael Delp, Eric Weiwiora, and Mark Ring

summary
• a technical breakthrough leading to a new

family of reinforcement learning algorithms

• temporal-difference (TD) learning with
approximations is now straightforward

• it is now practical to learn in parallel
about many predictions at once

• parallel prediction learning may be key to
understanding mind, brain, and intrinsic
motivation

knowledge is predictions

• of what will happen

• of what you could cause to happen

• at various time scales

• conditional on actions or courses of action

predictions can be more
powerful than you think
• not just a “saying before” of what the

sensory signals will be

• all scientific knowledge can be expressed as
predictions

• predictions can be about the outcomes of
extended courses of behavior (options)

• all the little things you know can be well
thought of as prediction

much of mind
is about prediction

• perception and state representation can be
thought of as making predictions

• models the world and cause and effect can be
thought of in terms of predictions

• planning can be thought of as composing
predictions to anticipate possible futures,
and then choosing among them

• learning value functions (and thus much of
conventional RL) is learning predictions

• predictions are the coin of the mental
realm

• thus, we should be focused on machinery
for efficiently learning predictions

parallel prediction demons

• we should be able to make and learn lots of
predictions at once, in parallel

• as in parallel prediction demons

• every demon should be able to learn on
every step

• this has always been the promise of off-
policy temporal-difference learning

but this promise has
been unfulfilled

• there has been no practical algorithm for
parallel prediction learning

• previous methods were too complex
(LSTD, iLSTD), restricted to table lookup
(Q-learning), not parallel (Monte Carlo,
Sarsa), too slow (importance sampling),
or had weak approximators (averaging)

until now

• now, for the first time, it is practical and
straightforward to do massive, in parallel,
prediction learning

• with new gradient-based TD algorithms

• GTD, TDC (NIPS-08, ICML-09, NIPS-09)

• GQ (submitted)

• Actor-critic-option algorithms (in prep)

outline
• Perhaps key to mind is being able to make

and learn a lot of predictions in parallel,
which is what TD learning was made for,
and which we can now finally do, with GQ

• Setting (online prediction learning)

• Watkins’s linear Q(λ)

• GQ inputs and outputs

• The GQ algorithm

• Example uses of GQ; including for IM

Setting

real-time, incremental

• all predictions are made and learned on
every time step

• 100 times a second

• constant-time computation per step

• constant memory

a continual stream
of experiential data

• every time step (say 10ms) we receive a new
sensory observation ot and take an action at

• we also update an agent state representation, st:

• st is whatever the agent uses to pick at,
i.e., there exist probabilities

• we place no constraints on s, u, or b

Pr a
t
= a s

t
= s⎡⎣ ⎤⎦ b(a | s)

s
t+1

 = u(s
t
,a
t
,o
t+1

)

behavior
policy

approximation architecture
is fixed and linear (for now)

• state-action pairs map in a fixed way to feature
vectors

• which map linearly to scalar predictions

• where the weights, , are what is learned

• we consider one prediction, and drop the “i”

s
t
a
t

→ x
t

= (x
t
(1), x

t
(2),…, x

t
(n)) ∈ℜn

pi
t
= w

t
i ix

t
= w

t
i (j) x

t
(j)

j
∑

w
t
i

w
t
i ∈ℜn

Watkins’s Q(λ)

Watkins’s Q(λ) semantics
(what is learned)

Learns an approximation to the optimal action-value function:

 p
t
= w

t
ix
t
≈ Q*(s

t
,a
t
) ∈ℜ

where

 Q*(s,a) = max
π
Eπ rt+1 + γ rt+2

+ γ 2r
t+3

+ s
t
= s,a

t
= a⎡

⎣
⎤
⎦

discount rate
(e.g., γ=0.9)

 policy for
picking a

k
, k ≥ t

Watkins’s Q(λ) learning rule

δ
t
= r
t+1 +max

a
γw

t
ix
t+1 −w

t
ix
t
 TD error, δ

t
∈ℜ

e
t
= {x

t
 otherwise

γ λe
t
+x

t
 if a

t
= argmax

a
w
t
ix(s

t
,a)

 eligibility trace, e
t
∈ℜn

w
t+1 = w

t
+αδ

t
e
t

• unsound (may diverge)

• traces frequently cut

• off-policy - learns the optimal policy and values
independent of the behavior policy

trace decay rate, λ∈[0,1]

step size, α>0

Watkins’s Q(λ) provides a hint
of the massive generalizations

that are possible
• you could learn simultaneously about multiple,

different

• reward functions

• discount rates

• non-greedy target policies

• state-dependent terminations

• you could predicted outcomes as well as rewards

GQ

π : A × S→ [0,1], π∑ (a | s) = 1

β : S→ [0,1]

GQ(λ,π,β,z,r) semantics

• target policy,

• termination probability,

• initiation set (set of interest),

• transient target function,

• outcome target function,

• eligibility-trace decay function, λ : S→ [0,1]

z : S→ℜ

hr : S→ℜ

p
t
≈ Eπ ,β ,λ rt+1 + rt+2

++ r
T
+

z
T

or

wix
T

s
t
,a
t
,T = time of

termination by β
or

truncation by λ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

I : S × A→ [0,1]

option

option
model

r, z

π ,β , I

action set state set

a

notational shortcuts
β
t
= β(s

t
)

I
t
= I(s

t
)

r
t
= r(s

t
)

z
t
= z(s

t
)

λ
t
= λ(s

t
)

x
t
= π

a
∑ (a | s

t
)x(s

t
,a) = E x

t
a
t
 π⎡⎣ ⎤⎦

GQ learning rule

• everything is O(#features)

• everything is well-defined and readily available

• similarities to expected Sarsa, with (1-β) in place of

δ
t
= r
t+1 + β

t+1zt+1 + (1− β
t+1)w t

ix
t+1 −w

t
ix
t

e
t
= (1− β

t
)λ
t

π(a
t
| s
t
)

b(a
t
| s
t
)
e
t−1 + Ix t

Δw
t
= α δ

t
e
t
− (1− β

t+1)(1− λ
t+1)(v t iet)x t+1⎡⎣ ⎤⎦

Δv
t
= αη δ

t
e
t
− (v

t
ix
t
)x
t

⎡⎣ ⎤⎦

γ

GQ learning code
void GQlearn(x,xbar,I,ρ,β,z,r,λ) {/* all except xs are scalar */

static double w[n],v[n],e[n];
double α=0.0001,η=1.0,dotux,dotue;
δ = r + β*z + (1-β)*dot(w,xbar) - dot(w,x);
for (i=0;i<n;i++) e[i] = ρ*e[i] + I*x[i];
dotve = dot(v,e);
dotvx = dot(v,x);
for (i=0;i<n;i++) {
 w[i] += α * (δ*e[i] - (1-β)*(1-λ)*dotve*xbar[i]);
 v[i] += α*η * (δ*e[i] - dotvx*x[i]);
 e[i] *= (1-β) * λ;
}

}

theoretical statement
There exists a scalar Bellman-error objective
function

such that

which guarantees convergence to
(under step-size conditions)

J(w) = p
w
− ΠTπ

λβp
w Db ⋅I

2

E
b

Δw⎡⎣ ⎤⎦ ∝ − ∇
w
J(w)

J(w) = 0

vector of predictions,
one per state

generalized
Bellman operator

projection back
into the space of
representable
predictions

Example uses of GQ

what kind of things might
we do with these demons?
• make everything a reward (for some demon)

• learn an option to achieve it

• learn a detector for the ability to achieve it

• take hand-coded options, learn about their
outcomes

• learn models of options suitable for planning

• guide behavior by the demons’ learning
progress (“learning feels good”)

bump anticipators
Continuously predict imminent bumps at various
time scales under the behavior policy

These 3 predictions could then be added to the
agent state, used to make decisions

π(a | s) = b(a | s)

β(s) = 0.1 (bump in next 10 steps = 0.1 seconds)

β(s) = 0.02 (bump in next 50 steps = 0.5 seconds)

β(s) = 0.002 (bump in next 500 steps = 5 seconds)

I(s) = 1.0

r(s) = 0

z(s) = accelerometer(s)

λ(s) = 0.9

three
different

predictions

“near something” detector
Can I get any IR sensor to give a sustained high
reading without moving very much?

Add detector d(s) for high IR reading for 0.5
seconds

Does not need to be run to completion

π(a | s) = 1 if a = argmax
′a
wix(s, ′a), otherwise 0

β(s) = d(s) (+ 0.01 if wheels are moving)

I(s) = 1.0

r(s) = 0

z(s) = d(s)
λ(s) = 0.95

other possibilities

• is there a ball (concave object) present?

• am I stuck? (what would happen to wheel
motion when torque is applied after/for
several time steps?)

• can I get the rattle to sound? How?

• target policies with constant actions may be
useful

learning a model of an option
For planning we need models of possible courses
of action (e.g., wall following)

Each such option model is a bunch of predictions
for the option’s π,β,I:

Predictions whose outcome targets are the
elements of the agent state:

One more prediction whose transient target
is , the deviation of the current real
reward from the long-term average real reward

This form is necessary and sufficient for planning

r(s)− r

r i(s) = 0, zi(s) = s(i)

intrinsic motivation

• imagine one million prediction demons, all learning
in parallel

• for various random or cleverly chosen
options and target functions

• imagine each can measure its learning progress

• use the sum-total learning progress as intrinsic
reward to direct the behavior policy

• weed and refine the set of demons, then repeat

conclusions
• prediction demons are a powerful language

for learning and representing knowledge

• prediction demons can learn online, in
parallel, and computationally efficiently

• they can certainly be used to learn a lot of
stuff about one’s world

• probably more than any previous AI

• and they can be a powerful, lightweight
substrate for intrinsic motivation systems

• thank you for your attention

