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What Is
Representation Learning (RL)?

* A learning process, generally over a long period of
time, that enables sulbsequent learning to be fast

* RL enables tast learning!

* That was the original idea, and for many it remains
the strongest idea

* But most of what goes on in our field is something
different



Representation learning (RL)
FOour meanings

RL is a relatively slow (2nd-order) process that results in:
1. Faster learning

2. Greater expressive power
and thus better approximation of complex functions

3. Better generalization

4. Representations pleasing to people



Outline

Representation learning should enable tast learning, but it
doesn't

How can we make RL about fast learning? What is required?

* Online, continual learning, thus nonstationary (or sequences
of learning tasks)

* A stronger methodology, allowing for more solid conclusions
A proposal in the form of a synthetic challenge task

Some results...almost on the challenge task



Online, continual learning

« How can RL, a slow, 2nd-order learning process, enable tast learning?
 How can slow learning enable fast learning”?

* You have to have the slow learning first, then the opportunity for fast
learning

e Thus, learning must be online, continual
* |t cannot be one batch of data, then no more learning
|t could be a sequence of tasks...

e But the most elegant way is a non-stationary task — non-stop learning,
with temporal symmetry



The GEOFF challenge
(GEneric Online Feature Finding)

A generic, synthetic, feature-finding testbed — infinitely
many task instances

Each task has different ideal features (randomly chosen)
Online regression (i.i.d., squared-error loss, No test set)
Target tunction is a two-layer network with random weights
* the hidden units are the ideal ‘target’ features

e the output layer is a single linear unit with non-stationary
weights



The GEOFF ‘target’ network

that generates the training data for learning

Output unit N0|Se
(Real-valued) Slowly changing
output weights
{+1, 0, -1}
Feature layer
50 x {0,1}

(linear threshold units) _
Fixed random

input weights
e {+1, -1}

Input layer
20 x {0,1}

(random input bits)



Target network  Solution network
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Both networks have the same structure, one Is learned.
Tests our algorithms’ ability to find good features efticiently.




Benefits of the GEOFF problem

* Direct measure of “RL enabling fast learning” because It's
(as asymptotic error) nhonstationary

* Direct, sensitive measure of feature-finding ability
(as rate of reduction of error)
because it's
» Little domain knowledge; all of it explicit synthetic
* No possibility of test-set leakage
* No role for positive proxies (still a role for negative proxies)

* Objective; no reliance on human assessment of rep’n

* Small, easy to implement



Problem: Stationary GEOFF
Solution #1: Many static features
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Problem: Stationary GEOFF
Solution #2: GGenerate & test search
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Problem: Stationary GEOFF
Solution #3: Add backpropagation

modified BP

fixed rep'n
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Now 500 target features and
1000 solution features

Backpropagation (BP) is
gradient descent throughout
the solution network

o features are now tanh
units rather than
threshold units

Modified BP removes the
effect of the magnitude of
the output weight

Apparently, both gradient
descent and G&T search
contribute to efficient feature
finding



Problem: Stationary GEOFF

Solution #4: Add unsupervised learning

Average MSE (50 runs)
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Now 100 target features and
200 solution features

Now input distribution is not
uniform

Unsupervised learning
adjusts the solution features

e SO that each Is active on
~20% of the examples

e S0 that each example
has ~20% active features

Protection means the top half
of features are not adjusted

Apparently, this negative
proxy can significantly
improve G&T search



But what about fast learning”

 And what about the non-stationarity needed to measure it”

* There is some evidence that backprop performs poorly on
non-stationary tasks



Mahmood, 2012

Problem: Non-stationary MNIST

Solution: Backpropagation

0.25

BP optimized for first task
0.20

0.15 — I
BP optimized for last task
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005 | | | 1
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Tasks

Classification Error Rate (50 runs)

MNIST modified to be a
seguence of tasks, each with
the same features, but
different output labels

Each task is full MNIST with
60,000 examples

The mapping from number
labels to the 10 output nodes
is shifted by one in each
successive task

Backprop does not improve
significantly on later tasks

In fact, it tends to perform
WOrse



But what about fast learning”

 And what about the non-stationarity needed to measure it”

* There is some evidence that backprop performs poorly on
non-stationary tasks

* |t tends toward catastrophic interference

* seems to be a need to protect useful features from
being “taken over” tor the new learning

e Step-size adaptation is part of the answer, and has been
studied in a non-stationary setting



Sutton 1992: Mahmood 2010

Non-stationary step-size problem

* Online linear regression (iid, squared error [0ss)
o 20 input signals, all standard normal N(O,1)
e Think of them as static features with output weights

* The target function is a weighted sum of the first five signals, where
all the (target) weights are either +1 or -1

* The learned function is a weighted sum of all 20 input signals, with
the learned weights adapted by gradient descent

o Step-size parameters, one per feature, are adapted by meta-gradient
descent (the Incremental Delta-Bar-Delta algorithm, Sutton 1992)

e [he step sizes shape the representation and generalization; learning
them is RL



Sutton 1992: Mahmood 2010

Non-stationary step-size problem
larget network

Output unit % |
(Real-valued) Noise

Other 15
Input signals
have no effect
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Five slowly
changing weights
e {+1, -1}

Input/feature layer
20 x N(O,1)

(random-normal reals)



Sutton 1992: Mahmood 2010

Non-stationary step-size problem
Target network  Solution network

Five slowly Cg— Noise 20 learned Cg 20 learned

step sizes

changing weights weights
eg{+g1’, —1}g (real vgalued) (real valued)
Other 15
Input signals
have no effect
00000000000 OCGO0CGOCD ¢

Can we find the relevant features and track their weights?
The step sizes determine the rep’'n and generalization.



I'he step-size learning algorithm

* |ncremental Delta-Bar-Delta (Sutton 1992)
e vector step size (one for each weight)

 meta-gradient descent:

o AStep-sizetr « Vsigp-size Error:2

* Extended to Backprop networks by Schraudolph 1999



Problem: Non-stationary Step-size
Solution: IDBD
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IDBD sends step sizes of irrelevant signals to ~0, These step-size values are near the
and those of relevant signals to ~.13 empirically determined optimum

¢ |DBD slowly learns the step sizes that enable fast subsequent learning
e |DBD is true RL!



summary

RL should enable tast learning!

* That was the original idea, but the field has strayed far
from this goal

Pursuing it requires online, continual learning

The GEOFF challenge problem is generic, synthetic, online,
non-stationary feature finding

* |t focuses on feature finding as an enabler of fast learning
e and avoids many of the methodological problems
| have presented results related to parts of this problem

But so far the GEOFF challenge has not been squarely met



