
Emphatic temporal-
difference learning

Rupam Mahmood, Huizhen (Janey) Yu, Martha White, Rich Sutton

Reinforcement Learning and Artificial Intelligence Laboratory
Department of Computing Science

University of Alberta
Canada

R
A I
L

&



What everybody should know about 

Temporal-difference (TD) learning
• A general method for learning to make multi-step predictions,  

e.g., value functions in reinforcement learning 

• Learns a guess from a guess 

• Applied by Samuel to play Checkers (1959), by Tesauro to beat 
humans at Backgammon (1992-5) and Jeopardy! (2011), and 
by Deepmind to play Atari games (2015) 

• Explains (accurately models) the brain reward systems of 
primates, rats, bees, and many other animals (see Schultz, 
Dayan & Montague 1997) 

• Arguably solves Bellman’s “curse of dimensionality”



Milestones in TD research
On-policy

1959 – First TD-like algorithm (Samuel) 

1974 – First TD algorithm (Witten) 

1988 – Linear TD(λ) & first convergence  
            theory (Sutton) 

1992 – General convergence theory for linear  
            TD(λ) (Dayan) 

1992 – TD-gammon (Tesauro) 

1994 – Sarsa(λ) (TD for control) (Rummery) 

1997 – Asymptotic bound for TD(λ) (Tsitsiklis  
            & Van Roy) 

1995-9 – LSTD(λ) (Barto & Bradtke, Boyan) 

2014 – True online TD(λ) (van Seijen)

Off-policy

1989 – Q-learning (TD for control) (Watkins) 

1995 – Counterexamples for convergence of 
linear off-policy TD learning (Baird) 

1999 – Residual gradient methods (Baird) 

2003 – LSPI (Lagoudakis & Parr) 

2009 – Gradient-TD methods (Sutton, Maei…) 

2010 – Off-policy LSTD (Yu) 

2014 – Proximal-gradient TD (Mahadevan)



Context: my focus on core model-
free TD learning algorithms

• TD(λ), Sarsa(λ), actor-critic, and descendants 

• I see them as the key building blocks of large-scale AI architectures 

• not just for value functions and reward, but for everything (GVFs) 

• I have challenging requirements that i nevertheless see as “modest” 

• Compatible with scaleable function approximation  

• Computationally congenial — extremely(?) low per-step 
computational complexity, O(thing being learned) 

• Sound and reasonably data efficient with off-policy training



State weightings are important,  
powerful, even magical,  

when using “genuine function approximation”  
(i.e., when the optimal solution can’t be approached)

• They are the difference between convergence and 
divergence in on-policy and off-policy TD learning 

• They are needed to make the problem well-defined 

• We can change the weighting by emphasizing some steps 
more than others in learning



Often some time steps are more important 
• Early time steps of an episode may be more important 

• Because of discounting 

• Because the control objective is to maximize the 
value of the starting state 

• In general, function approximation resources are limited  

• Not all states can be accurately valued  

• The accuracy of different state must be traded off! 

• You may want to control the tradeoff 



Bootstrapping interacts with 
state importance

• In the Monte Carlo case (λ=1) the values of different 
states (or time steps) are estimated independently,  
and their importances can be assigned 
independently 

• But with bootstrapping (λ<1) each state’s value is 
estimated based on the estimated values of later 
states; if the state is important, then it becomes 
important to accurately value the later states even if 
they are not important on their own



Two kinds of importance
• Intrinsic and derived, primary and secondary 

• The one you specify, and the one that follows 
from it because of bootstrapping  

• Our terms: Interest and Emphasis 

• Your intrinsic interest in valuing accurately on a 
time step 

• The total resultant emphasis that you place on 
each time step



• Data 

• State distribution 

• Objective to minimize 

• Emphatic TD(0) 

• Emphatic LSTD(0)
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• Derived from analysis of general bootstrapping 
relationships (Sutton, Mahmood, Precup & van Hasselt 2014) 

• Emphasis is a scalar signal 

• Defined from a new scalar followon trace Ft � 0, F�1 = 0

Mt � 0

Emphasis algorithm 
(Sutton, Mahmood & White 2015)

Ft = ⇢t�1�tFt�1 + i(St)

Mt = �t i(St) + (1� �t)Ft



Off-policy implications
• The emphasis weighting is stable under off-policy TD(λ)  

(like the on-policy weighting) (Sutton, Mahmood & White 2015) 

• It is the followon weighting, from the interest weighted 
behavior distribution (              ), under the target policy 

• Learning is convergent (though not necessarily of finite 
variance) under the emphasis weighting for arbitrary target 
and behavior policies (with coverage) (Yu 2015) 

• There are error bounds analogous to those for on-policy TD(λ) 
(Munos) 

• Emphatic TD is the simplest convergent off-policy TD algorithm 
(one parameter, one learning rate)  

dµ(s)i(s)



On-policy implications
• The emphasis weighting is still special, even in the on-

policy case (and even for LSTD) 

• It weights states according to their effect (including 
via bootstrapping) on states of high interest 

• This may be key to optimizing interest-weighted MSE 

• Emphasis is uniform in the classical continuing case —
constant             and  

• It makes a difference iff any of these are non-constant 

• Let's now consider some simple episodic cases

�, �, i, ⇢



What should the emphasis be? 
Consider 4 simple episodic cases

Interest only in 
the start state

Uniform 
interest

in all states

No bootstrapping 
λ=1 ? ?

Full bootstrapping 
λ=0 ? ?

How should emphasis 
be distributed over the 

time steps of an 
episode?

Equally?  
To the start state only? 

Some other way?

�t = 1, 8t
⇢t = 1, 8t



Case 1
• No bootstrapping, λ=1 
• Interest only in the start state

time 0 1 2 3 4 5 6
λ 1 1 1 1 1 1 1

I 1 0 0 0 0 0 0

M ? ? ? ? ? ? ?

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t



Case 1
• No bootstrapping, λ=1 
• Interest only in the start state

time 0 1 2 3 4 5 6
λ 1 1 1 1 1 1 1

I 1 0 0 0 0 0 0

M 1 0 0 0 0 0 0

boot- 
strapping

intrinsic 
interest

emphasis

Answer: All on the start state
anything else will reduce the asymptotic MSVE

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t



Case 2
• No bootstrapping, λ=1 
• Interest in all states (to the extent that they occur)

time 0 1 2 3 4 5 6
λ 1 1 1 1 1 1 1

I 1 1 1 1 1 1 1

M 1 ? ? ? ? ? ?

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t



Case 2
• No bootstrapping, λ=1 
• Interest in all states (to the extent that they occur)

time 0 1 2 3 4 5 6
λ 1 1 1 1 1 1 1

I 1 1 1 1 1 1 1

M 1 1 1 1 1 1 1

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??
Answer: Equally

which is the same as what TD(λ) and LSTD(λ) would do

�t = 1, 8t
⇢t = 1, 8t



Interest only in 
the start state

Uniform 
interest

in all states

No bootstrapping 
λ=1

All on the
 start state

M0=1, others 0

Equally
Mt =1

Full bootstrapping 
λ=0 ? ?

How should emphasis 
be distributed over the 

time steps of an 
episode?

Equally?  
To the start state only? 

Some other way?

What should the emphasis be? 
Consider 4 simple episodic cases

�t = 1, 8t
⇢t = 1, 8t



Case 3
• Complete bootstrapping, λ=0 
• Interest only in the start state

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0

I 1 0 0 0 0 0 0

M ? ? ? ? ? ? ?

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t



Case 3
• Complete bootstrapping, λ=0 
• Interest only in the start state

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0

I 1 0 0 0 0 0 0

M 1 1 1 1 1 1 1

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??
Answer: Equally

which is the same as what TD(λ) and LSTD(λ) would do

�t = 1, 8t
⇢t = 1, 8t



Case 4
• Complete bootstrapping, λ=0 
• Interest in all states (to the extent that they occur)

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0

I 1 1 1 1 1 1 1

M 1 ? ? ? ? ? ?

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t



Case 4
• Complete bootstrapping, λ=0 
• Interest in all states (to the extent that they occur)

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0

I 1 1 1 1 1 1 1

M 1 2 3 4 5 6 7

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??
Answer: Increasing linearly through the episode

a surprising prediction

�t = 1, 8t
⇢t = 1, 8t



2-state scalar example

• Increasing emphasis is not so crazy after all…
• Maybe emphasis, or something like it, can provide a uniform improvement 

in the asymptotic error of TD methods (λ<1)

Solution MSVE

Conventional TD ! = 2 ½

Emphatic TD ! = 1.5 ¼

Optimal ! = 1.5 ¼

R=1 R=1 terminal
state

I = 1 I = 1
M = 1 M = 2

� = 1
� = 0

� = 1 � = 1

v̂ ✓v̂ ✓



Interest only in 
the start state

Uniform 
interest

in all states

No bootstrapping 
λ=1

All on the
 start state

M0=1, others 0

Equally
Mt =1

Full bootstrapping 
λ=0

Equally
Mt =1

Increasing
Mt =t

How should emphasis 
be distributed over the 

time steps of an 
episode?

Equally?  
To the start state only? 

Some other way?

What should the emphasis be? 
Consider 4 simple episodic cases

The right distribution seems to depend on…everything

�t = 1, 8t
⇢t = 1, 8t



From the general forward view of TD(�) (Sutton et al ICML2014),

the update at step k bootstraps from (and thus relies on the

accuracy of) the estimate at later time t > k , with coe�cient
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Derivation of the emphasis algorithm



From the general forward view of TD(�) (Sutton et al ICML2014),

the update at step k bootstraps from (and thus relies on the

accuracy of) the estimate at later time t > k , with coe�cient
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The scalar random variable Ft , called the followon trace, can be

written and updated recursively by

Ft+1 = It+1 + �t+1
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The scalar random variable Ft , called the followon trace, can be

written and updated recursively by

Ft+1 = It+1 + �t+1

tX
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Case 1except
• No bootstrapping, λ=1, except at one step 
• Interest only in the start state

time 0 1 2 3 4 5 6
λ 1 1 1 0 1 1 1

I 1 0 0 0 0 0 0

M ? ? ? ? ? ? ?

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t



Case 1except
• No bootstrapping, λ=1 
• Interest only in the start state

time 0 1 2 3 4 5 6
λ 1 1 1 0 1 1 1

I 1 0 0 0 0 0 0

M 1 0 0 1 0 0 0

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t

Bootstrapping gives emphasis

• No bootstrapping, λ=1, except at one step 
• Interest only in the start state



Case 2except

time 0 1 2 3 4 5 6
λ 1 1 1 0 1 1 1

I 1 1 1 1 1 1 1

M 1 1 1 ? ? ? ?

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t• No bootstrapping, λ=1, except at one step 

• Interest in all states (to the extent that they occur)



Case 2except

time 0 1 2 3 4 5 6
λ 1 1 1 0 1 1 1

I 1 1 1 1 1 1 1

M 1 1 1 4 1 1 1

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t• No bootstrapping, λ=1, except at one step 

• Interest in all states (to the extent that they occur)

The followon trace accumulates with interest
It just needs bootstrapping to bring it out



Case 2except-twice

time 0 1 2 3 4 5 6
λ 1 1 1 0 1 0 1

I 1 1 1 1 1 1 1

M 1 1 1 4 1 6 1

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t• No bootstrapping, λ=1, except at two steps 

• Interest in all states (to the extent that they occur)



Case 2except-twice

time 0 1 2 3 4 5 6
λ 1 1 1 0 1 0 1

I 1 1 1 1 1 1 1

M 1 1 1 4 1 6 1

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t• No bootstrapping, λ=1, except at two steps 

• Interest in all states (to the extent that they occur)

The followon trace accumulates with interest
It just needs bootstrapping to bring it out



Case 3except
• Complete bootstrapping, λ=0, except at one step 
• Interest only in the start state

time 0 1 2 3 4 5 6
λ 0 0 0 1 0 0 0

I 1 0 0 0 0 0 0

M 1 1 1 ? ? ? ?

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t



Case 3except
• Complete bootstrapping, λ=0, except at one step 
• Interest only in the start state

time 0 1 2 3 4 5 6
λ 0 0 0 1 0 0 0

I 1 0 0 0 0 0 0

M 1 1 1 0 1 1 1

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t

The state is ignored, skipped over, 
but bootstrapping continues afterwards



Case 3the-other-except
• Complete bootstrapping, λ=0 
• Interest only in the start state, and at one other step

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0

I 1 0 0 1 0 0 0

M 1 1 1 ? ? ? ?

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t



Case 3the-other-except
• Complete bootstrapping, λ=0 
• Interest only in the start state, and at one other step

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0

I 1 0 0 1 0 0 0

M 1 1 1 2 2 2 2

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t

Again, interest accumulates in the followon trace
and is revealed by bootstrapping



Case 4except
• Complete bootstrapping, λ=0, except at one step 
• Interest in all states (to the extent that they occur)

time 0 1 2 3 4 5 6
λ 0 0 0 1 0 0 0

I 1 1 1 1 1 1 1

M 1 2 3 ? ? ? ?

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t



Case 4except
• Complete bootstrapping, λ=0, except at one step 
• Interest in all states (to the extent that they occur)

time 0 1 2 3 4 5 6
λ 0 0 0 1 0 0 0

I 1 1 1 1 1 1 1

M 1 2 3 1 5 6 7

boot- 
strapping

intrinsic 
interest

emphasis

How should the emphasis be distributed over time steps??

�t = 1, 8t
⇢t = 1, 8t

Weird, but it kinda makes sense…



What should the emphasis be?

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0
" ½ ½ ½ ½ ½ ½ ½
# 1 1 1 1 1 1 1
I 1 0 0 0 0 0 0
M ? ? ? ? ? ? ?

boot- 
strapping

dis- 
counting

importance 
sampling

intrinsic 
interest

emphasis



What should the emphasis be?

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0
" ½ ½ ½ ½ ½ ½ ½
# 1 1 1 1 1 1 1
I 1 0 0 0 0 0 0
M 1 ½ ¼ ⅛ 1/16 1/32 1/64

boot- 
strapping

dis- 
counting

importance 
sampling

intrinsic 
interest

emphasis

Phil Thomas, 2014Mt = �t



What should the emphasis be?

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0
" ½ ½ ½ ½ ½ ½ ½
# 1 1 1 1 1 1 1
I 0 1 0 0 1 0 0
M ? ? ? ? ? ? ?

boot- 
strapping

dis- 
counting

importance 
sampling

intrinsic 
interest

emphasis



What should the emphasis be?

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0
" ½ ½ ½ ½ ½ ½ ½
# 1 1 1 1 1 1 1
I 0 1 0 0 1 0 0
M 0 1 ½ ¼ 1+⅛ ½+1/16 ¼+1/32

boot- 
strapping

dis- 
counting

importance 
sampling

intrinsic 
interest

emphasis



Off-policy examples…



What should the emphasis be?

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0
" 1 1 1 1 1 1 1
# 1 1 ½ 1 1 1 1
I 1 0 0 0 0 0 0
M 1 1 ? ? ? ? ?

boot- 
strapping

dis- 
counting

importance 
sampling

intrinsic 
interest

emphasis

And the final overall algorithm, which might be called true
o↵-policy TD(�), is

�t = Rt+1 + �t+1✓
>
t �t+1 � ✓>t �t

et = ⇢t
⇥
�t�tet�1 + ↵Mt(1� ⇢t�t�t�

>
t et�1)�t

⇤
with e�1 = 0

✓t+1 = ✓t + �tet +(et � ↵Mt⇢t�t)(✓t � ✓t�1)
>�t

Mt = It + (1� �t)Ht

Ht = �t⇢t�1(It�1 + Ht�1) with H0 = 0

where

⇢t =
⇡(At |St)
b(At |St)

(⇢ = 1 if on-policy)

�t = �(St) �t = �(St) �t = �(St)

✓t , et ,�t 2 <n.



What should the emphasis be?

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0
" 1 1 1 1 1 1 1
# 1 1 ½ 1 1 1 1
I 1 0 0 0 0 0 0
M 1 1 1 ½ ½ ½ ½

boot- 
strapping

dis- 
counting

importance 
sampling

intrinsic 
interest

emphasis

if there is a deviation, it affects the next emphasis

And the final overall algorithm, which might be called true
o↵-policy TD(�), is

�t = Rt+1 + �t+1✓
>
t �t+1 � ✓>t �t

et = ⇢t
⇥
�t�tet�1 + ↵Mt(1� ⇢t�t�t�

>
t et�1)�t

⇤
with e�1 = 0

✓t+1 = ✓t + �tet +(et � ↵Mt⇢t�t)(✓t � ✓t�1)
>�t

Mt = It + (1� �t)Ht

Ht = �t⇢t�1(It�1 + Ht�1) with H0 = 0

where

⇢t =
⇡(At |St)
b(At |St)

(⇢ = 1 if on-policy)

�t = �(St) �t = �(St) �t = �(St)

✓t , et ,�t 2 <n.



What should the emphasis be?

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0
" 1 1 1 1 1 1 1
# 1 1 0 1 1 1 1
I 1 0 0 0 0 0 0
M 1 1 ? ? ? ? ?

boot- 
strapping

dis- 
counting

importance 
sampling

intrinsic 
interest

emphasis

And the final overall algorithm, which might be called true
o↵-policy TD(�), is

�t = Rt+1 + �t+1✓
>
t �t+1 � ✓>t �t

et = ⇢t
⇥
�t�tet�1 + ↵Mt(1� ⇢t�t�t�

>
t et�1)�t

⇤
with e�1 = 0

✓t+1 = ✓t + �tet +(et � ↵Mt⇢t�t)(✓t � ✓t�1)
>�t

Mt = It + (1� �t)Ht

Ht = �t⇢t�1(It�1 + Ht�1) with H0 = 0

where

⇢t =
⇡(At |St)
b(At |St)

(⇢ = 1 if on-policy)

�t = �(St) �t = �(St) �t = �(St)

✓t , et ,�t 2 <n.



What should the emphasis be?

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0
" 1 1 1 1 1 1 1
# 1 1 0 1 1 1 1
I 1 0 0 0 0 0 0
M 1 1 1 0 0 0 0

boot- 
strapping

dis- 
counting

importance 
sampling

intrinsic 
interest

emphasis

if there is a deviation, then nothing after matters 
(until the next intrinsically interesting thing happens)

And the final overall algorithm, which might be called true
o↵-policy TD(�), is

�t = Rt+1 + �t+1✓
>
t �t+1 � ✓>t �t

et = ⇢t
⇥
�t�tet�1 + ↵Mt(1� ⇢t�t�t�

>
t et�1)�t

⇤
with e�1 = 0

✓t+1 = ✓t + �tet +(et � ↵Mt⇢t�t)(✓t � ✓t�1)
>�t

Mt = It + (1� �t)Ht

Ht = �t⇢t�1(It�1 + Ht�1) with H0 = 0

where

⇢t =
⇡(At |St)
b(At |St)

(⇢ = 1 if on-policy)

�t = �(St) �t = �(St) �t = �(St)

✓t , et ,�t 2 <n.



What should the emphasis be?

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0
" 1 1 1 1 1 1 1
# 1 2 2 2 ¼ 1 0
I 1 0 0 0 0 0 0
M 1 ? ? ? ? ? ?

boot- 
strapping

dis- 
counting

importance 
sampling

intrinsic 
interest

emphasis

And the final overall algorithm, which might be called true
o↵-policy TD(�), is

�t = Rt+1 + �t+1✓
>
t �t+1 � ✓>t �t

et = ⇢t
⇥
�t�tet�1 + ↵Mt(1� ⇢t�t�t�

>
t et�1)�t

⇤
with e�1 = 0

✓t+1 = ✓t + �tet +(et � ↵Mt⇢t�t)(✓t � ✓t�1)
>�t

Mt = It + (1� �t)Ht

Ht = �t⇢t�1(It�1 + Ht�1) with H0 = 0

where

⇢t =
⇡(At |St)
b(At |St)

(⇢ = 1 if on-policy)

�t = �(St) �t = �(St) �t = �(St)

✓t , et ,�t 2 <n.



What should the emphasis be?

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0
" 1 1 1 1 1 1 1
# 1 2 2 2 ¼ 1 0
I 1 0 0 0 0 0 0
M 1 1 2 4 8 ? ?

boot- 
strapping

dis- 
counting

importance 
sampling

intrinsic 
interest

emphasis

You must scale by the product of importance  
sampling ratios

And the final overall algorithm, which might be called true
o↵-policy TD(�), is

�t = Rt+1 + �t+1✓
>
t �t+1 � ✓>t �t

et = ⇢t
⇥
�t�tet�1 + ↵Mt(1� ⇢t�t�t�

>
t et�1)�t

⇤
with e�1 = 0

✓t+1 = ✓t + �tet +(et � ↵Mt⇢t�t)(✓t � ✓t�1)
>�t

Mt = It + (1� �t)Ht

Ht = �t⇢t�1(It�1 + Ht�1) with H0 = 0

where

⇢t =
⇡(At |St)
b(At |St)

(⇢ = 1 if on-policy)

�t = �(St) �t = �(St) �t = �(St)

✓t , et ,�t 2 <n.



What should the emphasis be?

time 0 1 2 3 4 5 6
λ 0 0 0 0 0 0 0
" 1 1 1 1 1 1 1
# 1 2 2 2 ¼ 1 0
I 1 0 0 0 0 0 0
M 1 1 2 4 8 2 2

boot- 
strapping

dis- 
counting

importance 
sampling

intrinsic 
interest

emphasis

You must scale by the product of importance  
sampling ratios

And the final overall algorithm, which might be called true
o↵-policy TD(�), is

�t = Rt+1 + �t+1✓
>
t �t+1 � ✓>t �t

et = ⇢t
⇥
�t�tet�1 + ↵Mt(1� ⇢t�t�t�

>
t et�1)�t

⇤
with e�1 = 0

✓t+1 = ✓t + �tet +(et � ↵Mt⇢t�t)(✓t � ✓t�1)
>�t

Mt = It + (1� �t)Ht

Ht = �t⇢t�1(It�1 + Ht�1) with H0 = 0

where

⇢t =
⇡(At |St)
b(At |St)

(⇢ = 1 if on-policy)

�t = �(St) �t = �(St) �t = �(St)

✓t , et ,�t 2 <n.



Conclusions 
• The allocation of function approximation resources by state 

weightings is important 

• It can make off-policy learning stable  

• Our emphasis algorithm makes some surprising predictions 
about optimal allocation of FA resources 

• It may be able to improve error bounds for on-policy learning 

• We have treated only policy evaluation (prediction);  
the control case will bring its own surprises 

• There is still a lot to learn about bootstrapping, state weightings, 
and function approximation
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