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Machine Intelligence Today

• Increasing computational power (Moore’s Law) drives progress 

• Methods that scale with computation are the most impactful 

• Thus the current successes of machine learning and deep learning 

Moore’s law proper
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Scaling with computation is new. Not the usual in CS

• The usual scaling is scaling with problem size 

• bigger problem ⇒ more computation needed to solve it exactly 

• Now we assume the problem could never be solved exactly 

• The new scaling is scaling with computation 

• more computation ⇒ a better approximate answer 



We need methods that scale with increasing computation 
to better approximate answers.
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RL has scaled with computation pretty well

• It has embraced function approximation.  

• It has embraced Deep Learning.  

• It has embraced learning from unprepared experience.  

• It has embraced search, particularly MCTS.  

• It has embraced replay and (to some extent) planning.  

• All these things scale with computational resources



But RL has held back. 
It has not fully embraced approximation

• RL is grounded in finite MDPs and tabular methods 

• To really abandon finite MDPs challenges us psychologically, 
requires strong discipline 

• If we fully embraced approximation we would lose so much! 

• We lose discounted reward and all the theory built on it 

• We lose Bellman Errors 

• We lose Markov state, thus transition probabilities and 
expectations, including all true value functions vπ, v*, qπ, q*



How has RL dealt with the loss?

Denial

Anger

Bargaining

Depression

Acceptance

“The five stages of grieving”



• World (environment) states map to feature vectors  

• Then all agent operations use only the feature vectors  

• Thus, we may talk about a value function , but really it is  

• Note  is not Markov;  
what happens next will depend on past feature vectors (and actions) 

• e.g.,  is not defined

ϕt = ϕ(St) ∈ ℜd, d ≪ |𝒮 |

ϕt

̂vw(s) s → ϕ → ̂v

ϕt

Pr[ϕt+1 = ϕ′ � ∣ ϕt = ϕ]

Approximation in Reinforcement Learning
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• World states map to feature vectors  

• Note that there may be as many as  different feature vectors  

• Thus the feature vectors cannot be treated as individuals in any way 
(they must be processed parametrically)  

• e.g., we couldn’t approximate  (even if it made sense) 
because you would have to store things for each  

• and it would depend on the behavior policy

ϕt = ϕ(St) ∈ ℜd, d ≪ |𝒮 |

|𝒮 |

Pr[ϕt+1 = ϕ′� ∣ ϕt = ϕ]
ϕ

Approximation in Reinforcement Learning (2)



Fully embracing approximation means
• the agent can’t store things for individual states 

• the agent can’t do anything that treats individual feature vectors distinctly  

• the state the agent works with will not be Markov 

• never converging to the exactly correct anything, even in the limit 

• the world is much bigger (more complex) than the agent 

• even as the agent’s computational complexity grows exponentially! 

• experience is too big to be fully processed by the agent,  
particularly in real time 

• the best approximations will change over time, thus learning must be online



The world is much more complicated than you

• Thus, approximation must be embraced. 

• Anything you try to learn can only be learned 

approximately: 

• value functions, 

• policies, 

• models, 

• states. 


• Violating this principle is the most important problem 
with the use of simulated worlds.

≫

Big world ⇒ apparent non-stationarity  
                ⇒ changing approximate value function



Acceptance and opportunity (1):
Function approximation when there is no ideal

• Approximation is okay, we can still do things.  
It’s just different. Probably better, certainly real-er. 

• Transition probabilities and expectations  
are replaced by a function approximator with a loss 

• There are not usable “true” value functions 

• but we can have approximations with a loss 

• and we still do have mean squared return error (for a fixed policy):        

MSRE(w) ≐ lim
n→∞

1
n

n

∑
k=1

[ ̂v(St+k, w) − Gt+k]2,  if Ai were selected∼π, ∀i ≥ t

weight vector returnapprox value of state policyaction



Acceptance and opportunity (2):
Discounting ⇒ Maximize average reward rate

• All policies  are ranked according to their reward rate: 

 

• Returns are defined relative to : 
 

• Learning and planning algorithms are less developed,  
but Yi Wan and Abhishek Naik have just made good progress (NeurIPS)

π

r(π) ≐ lim
n→∞

1
n

n

∑
k=1

Rt+k,  if Ai ∼ π, ∀i ≥ t

r(π)
Gt ≐ Rt+1 − r(π) + Rt+2 − r(π) + Rt+3 − r(π) + ⋯

actionreward



Acceptance and opportunity (3):
Feature function ⇒ state-update function

• Instead of an unknowable function  accessing an unknowable world state 

• We have a known state-update function, operating on known experience, with 
a known, improvable objective (summarizing the past to predict the future): 

 

• This is just a better way to get a non-Markov state 

• Our Agent-State Research Group is working on this

ϕ

St = u(St−1, At−1, Ot)
actionstate

observation
state-update function



Acceptance and opportunity (4):
Converging ⇒ tracking

• Approximation means accepting that the world is big, you can’t get anything exactly right 

• You could converge to the best approximate static solution, balancing all the errors,  
or you could track the current best approximation 

• Surprisingly, you can do better by tracking, maybe much better  
(see ICML2007 paper by Dave Silver, Anna Koop, and me) 

• Tracking means learning and relearning, continually, online,  
like an endless sequence of related learning problems, but all from one base problem 

• Thus approximation provides a new basis, a new rationale,  
for on-line learning, meta learning, generalization, and representation learning!



Conclusion

• Approximation is key to future advances in machine intelligence 

• As the premiere RL research institution, we should be leading the 
advances in approximation within RL 

• Approximation seems a difficult challenge, but it is necessary,  

• and will yield great dividends if we fully embrace it 

• Fully embracing approximation is on the critical path to the future 
of machine intelligence


