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Abstract

AI is at an impasse. It is stuck, or downsizing. Unable to build large, ambitious systems
because no means to manage complexity. Now people manage complexity, but a large AI must do
it itself. An AI must be able to tell for itself when it is right and when it is wrong. Experience is
the route to this...

Experience should be at the center of AI. It is what AI is about. It is the data of AI, yet it has
been sidelined. An AI must be able to tell for itself when it is right and when it is wrong.

Experience plays a central role in the problem of artificial intelligence. If intelligence is a
computation, then the temporal stream of sensations is its input, and the temporal stream of actions
is its output. These two intermingled time series are both the basis for all intelligent decision making
and the basis for assessing it. Experience waits for neither man nor machine. Its events occur in
an unalterable order and pace. Sensory signals may require quick action, or a more deliberate
response. An action taken cannot be retracted. The temporal structure of experience is the single
most important computational feature of the problem of artificial intelligence.

Nevertheless, experience has played a less than salient role in the field of artificial intelligence.
Artificial intelligence has often dealt with subjects such as inference, diagnosis, and problem-
solving in such a way as to minimize the impact of real-time sensation and action. It is hard to
discern any meaningful role for experience in classical question-answering AI systems. These sys-
tems may help people predict and control their experience, but the systems themselves have none.

Robotics has always been an important exception, but even there experience and time play
less of a role than might have been anticipated. Motor control is dominated by planning methods
that emphasize trajectories and kinematics over dynamics. Computer vision research is concerned
mostly with static images, or with open-loop streams of images with little role for action. Machine
learning is dominated by methods which assume independent, identically distributed data—data in
which order is irrelevant and there is no action.

Recent trends in artificial intelligence can be seen as in part a shift in orientation towards expe-
rience. The “agent oriented” view of AI can be viewed in this light. Probabilistic models such as
Markov decision processes, dynamic Bayes networks, and reinforcement learning are also part of
the modern trend towards recognizing a primary role for temporal data and action.

A natural place to begin exploring the role of experience in artificial intelligence is in knowledge
representation. Knowledge is critical to the performance of successful AI systems, from the knowl-
edgebase of a diagnosis system to the evaluation function of a chess-playing program to the map
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and sensor model of a navigating robot. Intelligence itself can be defined as the ability to maintain
a very large body of knowledge and apply it effectively and flexibly to new problems.

While large amounts of knowledge is a great strength of AI systems, it is also a great weakness.
The problem is that as knowledge bases grow they become more brittle and difficult to maintain.
There arise inconsistencies in the terminology used by different people or at different times. The
more diverse the knowledge the greater are the opportunities for confusions. Errors are inevitably
present, if only because of typos in data entry. When an error becomes apparent, the problem
can only be fixed by a human who is expert in the structure and terminology of the knowledge
base. This is the root difficulty: the accuracy of the knowledge can ultimately only be verified and
safely maintained by a person intimately familiar with most of the knowledge and its representation.
This puts an upper bound on the size of the knowledge base. As long as people are the ultimate
guarantors—nay, definers—of truth, then the machine cannot become much smarter than its human
handlers. Verifying knowledge by consistency with human knowledge is ultimately, inevitably, a
dead end.

How can we move beyond human verification? There may be several paths towards giving
the machine more responsibility and ability for verifying its knowledge. One is to focus on the
consistency of the knowledge. It may be possible to rule out some beliefs as being logically or
mathematically inconsistent. For the vast majority of everyday world knowledge, however, it seems
unlikely that logic alone can establish truth values.

Another route to verification, the one explored in this paper, is consistency with experience. If
knowledge is expressed as a statement about experience, then in many cases it can be verified by
comparison with experiential data. This approach has the potential to substantially resolve the prob-
lem of autonomous knowledge verification. [some examples: battery charger, chair, john is in the
coffee room] The greatest challenge to this approach, at least as compared with human verification,
is that sensations and actions are typically low-level representations, whereas the knowledge that
people most easily relate to is at a much higher level. This mismatch makes it difficult for people
to transfer their knowledge in an experiential form, to understand the AI’s decision process, and to
trust its choices. But an even greater challenge is to our imaginations. How is it possible for even
slightly abstract concepts, such as that of a book or a chair, to be represented in experiential terms?
How can they be represented so fully that everything about that concept has been captured and can
be autonomously verified? This paper is about trying to answer this question.

First I establish the problem of experiential representation of abstract concepts more formally
and fully. That done, an argument is made that all world knowledge is well understood as predic-
tions of future experience. Although the gap from low-level experience to abstract concepts may
seem immense, in theory it must be bridgeable. The bulk of this paper is an argument that this
bridgeability, which in theory must be true, is also plausible. Recent methods for state and action
representation, together with function approximation, can enable us to take significant steps toward
abstract concepts that are fully grounded in experience.
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Figure 1: Experience is the signals crossing the line separating agent from world.

1. Experience

To distinguish an agent from its world is to draw a line. On one side is the agent, receiving sensory
signals and generating actions. On the other side, the world receives the actions and generates the
sensory signals. Let us denote the action taken at time t as at ∈ A, and the sensation, or observation,
generated at time t as ot ∈ O. Time is taken to be discrete, t = 1, 2, 3, .... The time step could
be arbitrary in duration, but we think of it as some fast time scale, perhaps one hundredth or one
thousandth of a second. Experience is the intermingled sequence of actions and observations

o1, a1, o2, a2, o3, a3, . . .

each element of which depends only on those preceding it. See Figure 1. Define E = {O ×A}∗ as
the set of all possible experiences.

Let us call the experience sequence up through some action a history. Formally, any world can
be completely specified by a probability distribution over next observations conditional on history,
that is, by the probability P (o|h) that the next observation is o given history h, for all o ∈ O and
h ∈ E . To know P exactly and completely is to know everything there is to know about the agent’s
world.1 Short of that, we may have an approximate model of the world.

2. Predictive knowledge

The perspective being developed here is that the world is a formal, mathematical object, a function
mapping histories to probability distributions over observations. In this sense it is pointless to talk
about what is “really” going on in the world. The only thing to say about the world is to predict
probability distributions over observations. This is meant to be an absolute statement. Given an
input-ouput definition of the world, there can be no knowledge of it that is not experiential:

1. Suppose we have a model of the world, an approximation P̂ to P . How can we define the quality of the model? First,
we need only look at the future; we can take the history so far as given and just consider further histories after that.
Thus, P̂ and P can be taken to give distributions for future histories. I offer a policy-dependent measure of the loss
of a model, that is, of how much is does not predict the data:

Lπ(P ||P̂ ) = lim
n→∞

1

n

n∑
l=0

1

|Ht|
∑
h∈Hl

∑
o

P (o|h) log 1

P̂ (o|h)
.
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Everything we know that is specific to this world (as opposed to universally true in any
world) is a prediction of experience. All world knowledge must be translatable into
statements about future experience.

Our focus is appropriately on the predictive aspect. Memories can be simple recordings of the full
experience stream to date. Summaries and abstract representations of the history are significant only
in so far as they affect predictions of future experience. Without loss of generality we can consider
all world knowledge to be predictive.

One possible objection could be that logical and mathematical knowledge is not predictive. We
know that 1+1 = 2, that the area of a circle is πr2, or that ¬(p∨q)⇔ ¬p∧¬q, and we know these
absolutely. Comparing them to experience cannot prove them wrong, only that they do not apply in
this situation. Mathematical truths are true for any world. However, for this very reason they cannot
be considered knowledge of any particular world. Knowing them may be helpful to us as part of
making predictions, but only the predictions themselves can be considered world knowledge.

These distinctions are well known in philosophy, particularly the philosophy of science. Knowl-
edge is conventionally divided into the analytic (mathematical) and the synthetic (empirical). The
logical positivists were among the earliest and clearest exponents of this point of view and, though
it remains unsettled in philosophy, it is unchallenged in science and mathematics. In retrospect,
mathematical and empirical truth—logical implication and accurate prediction—are very different
things. It is unfortunate that the same term, “truth,” has been used for both.

Let us consider some examples. Clearly, much everyday knowledge is predictive. To know that
Joe is in the coffee room is to predict that you will see him if you go there, or that you will hear him
if you telephone there. To know what’s in a box is to predict what you will see if you open it, or hear
if you shake it, feel if you lift it, and so on. To know about gravity is to make predictions about how
objects behave when dropped. To know the three-dimensional shape of an object in your hand, say
a teacup, is to predict how its silhouette would change if you were to rotate it along various axes. A
teacup is not a single prediction but a pattern of interaction, a coherent set of relationships between
action and observation.

Other examples: Dallas Cowboys move to Miami. My name is Richard. Very cold on pluto.
Brutus killed Caesar. Dinosaurs once ruled the earth. Canberra is the capital of Australia. Santa
Claus wears a red coat. A unicorn has one horn. John loves Mary.

Although the semantics of “Joe is in the coffee room” may be predictive in an informal sense,
it stills seems far removed from an explicit statement about experience, about the hundred-times-a-
second stream of inter-mingled observations and actions. What does it mean to “go to the coffee
room” and “see him there”. The gap between everyday concepts and low-level experience is im-
mense. And yet there must be a way to bridge it. The only thing to say about the world is to
make predictions about its behavior. In a formal sense, anything we know or could know about the
world must be translatable into statements about low-level future experience. Bridging the gap is a
tremendous challenge, and in this paper I attempt to take the first few steps toward it. This is what I
call the grand challenge of grounding knowledge in experience:
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To represent human-level world knowledge solely in terms of experience, that is, in
terms of observations, actions, and time steps, without reference to any other concepts
or entities unless they are themselves represented in terms of experience.

The grand challenge is to represent all world knowledge with an extreme, minimalist ontology of
only three elements. You are not allowed to presume the existence of self, of objects, of space, of
situations, even of “things”.

Grounding knowledge in experience is extremely challenging, but brings an equally extreme
benefit. Representing knowledge in terms of experience enables it to be compared with experience.
Received knowledge can be verified or disproved by this comparison. Existing knowledge can be
tuned and new knowledge can be created (learned). The overall effect is that the AI agent may
be able to take much more responsibility for maintaining and organizing its knowledge. This is a
substantial benefit; the lack of such an ability is obstructing much AI research, as discussed earlier.

A related advantage is that grounded knowledge may be more useful. The primary use for
knowledge is to aid planning or reasoning processes. Predictive knowledge is suited to planning
processes based on repeated projection, such as state-space search, dynamic programming, and
model-based reinforcement learning (Dyna, pri-sweep, LSTD). If A predicts B, and B predicts
C, then it follows that A predicts C. If the final goal is to obtain some identified observation or
observations, such as rewards, then predictive reasoning processes are generally suitable.

3. Questions and Answers

Modern philosophy of science tells us that any scientific theory must be empirically verifiable. It
must make predictions about experiments that can be compared to measureable outcomes. We
have been developing a similar view of knowledge—that the content of knowledge is a prediction
about the measurable outcome of a way of behaving. The prediction can be divided into two parts,
one specifying the question being asked and the other the answer offered by the prediction. The
question is “What will be the measured value if I behaved this way and measured that?” An answer
is a particular predicted value for the measurement which will be compared to what actually happens
to assess the prediction’s accuracy. For example, a question roughly corresponding to “How much
will it rain tomorrow” would be a procedure for waiting, identifying when tomorrow has begun,
measuring the cumulative precipitation in centimeters, and ending when the end-of-day has been
identified. The result based on this actual future will be a number such as 1.2 which can be compared
to the answer offered by the prediction, say 1.1.

In this example, the future produces a result, the number 1.2, whose structure is similar to that
of the answer, and one may be tempted to refer to the result as the “correct answer.” In general,
however, there will be no identifiable correct answer that can be identified as arising from the ques-
tion applied to the future. The idea of a correct answer is also misleading because it suggests an
answer coming from the future, whereas we will consider answers always to be generated by histo-
ries. There may be one or more senses of best answers that could be generated, but always from a
history, not a future.

Figure 3 shows how information flows between experience and the question and answer making
up a prediction made at a particular time. Based on the history, the answer is formed and passed
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Figure 2: Information flow relationships between questions and answers, histories and futures.

on to the question, which compares it with the future. Eventually, a measure of mismatch between
answer and future is computed, called the loss. This process is repeated at each moment in time and
for each prediction made at that time.

Note that the question in this example is substantially more complex and substantial than its
answer; this is typically the case. Note also that the question alone is not world knowledge. It does
not say anything about the future unless matched with an answer.

For knowledge to be clear, the experiment and the measurement corresponding to the question
must be specified unambiguously and in detail. We state this viewpoint as the explicit prediction
manifesto:

Every prediction is a question and an answer.

Both the question and the answer must be explicit in the sense of being accessible to
the AI agent, i.e., of being machine readable, interpretable, and usable.

The explicit prediction manifesto is a way of expressing the grand challenge of empirical knowledge
representation in terms of questions and answers. If knowledge is in predictive form, then the
predictions must be explicit in terms of observations and actions in order to meet the challenge.

It is useful to be more formal at this point. In general, a question is a loss function on futures
with respect to a particular way of behaving. The way of behaving is formalized as a policy, a
(possibly deterministic) mapping from E ×O to probabilities of taking each action inA. The policy
and the world together determine a future or probability distribution over futures. For a given space
of possible answers Y , a question’s loss function is a map q : E×Y 7→ <+ from futures and answers
to a non-negative number, the loss. A good answer is one with a small loss or small expected loss.

For example, in the example given above for “How much will it rain tomorrow”, the answer
space is the non-negative real numbers, Y = <+. Given a history h ∈ E , an answer y(h) might
be produced by a learned answer function y : E 7→ Y . Given a future f ∈ E , the loss function
would examine it in detail to determine the time steps at which tomorrow is said to begin and end.
Suppose the precipitation on each time step “in centimeters” is one component of the observation
on that step. This component is summed between the start and end times to produce a correct
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answer z(f) ∈ E . Finally, y(h) and z(f) are compared to obtain, for example, a squared loss
q(f, y(h)) = (z(f)− y(h))2.

The interpretation in terms of “centimeters” in this example is purely for our benefit; the mean-
ing of the answer is with respect to the measurement made by the question, irrespective of whatever
interpretation we might place on it. Our approach is unusual in this respect. Usually in statistics and
machine learning the focus is on calibrated measurements that accurately mirror some quantity that
is meaningful to people. Here we focus on the meaning of the answer that has been explicitly and
operationally defined by the question’s loss function. By accepting the mechanical interpretation
as primary we become able to verify and maintain the accuracy of answers autonomously without
human intervention.

A related way in which our approach is distinctive is that we will typically consider many
questions and a great variety of questions. For example, to express the shape of an object alone
requires many questions corresponding to all the ways the object can be turned and manipulated. In
statistics and machine learning, on the other hand, it is common to consider only a single question.
There may be a training set of inputs and outputs with no temporal structure, in which case the
single question “what is the output for this input?” is so obvious that it needs little attention. Or
there may be a time sequence but only a single question, such as “what will the next observation
be?”

In these cases, in which there is only one questions, it is common to use the word “prediction”
to refer just to answers. In machine learning, for example, the output of the learner—the answer—is
often referred to as a prediction. It is important to realize that that sense of prediction—without the
question—is much smaller than that which we are using here. Omitting the question is omitting
much; the question part of a prediction is usually much larger and more complex than the answer
part. For example, consider the question, “If I flipped this coin, with what probability would it come
up heads?” The answer is simple; it’s a number, say 0.5, and it is straightforward to represent it in
a machine. But how is the machine to represent the concepts of flipping, coin, and heads? Each
of these are high-level abstractions corresponding to complex patterns of behavior and experience.
Flipping is a complex, closed-loop motor procedure for balancing the coin on a finger, striking it
with your thumb, then catching, turning, and slapping it onto the back of your hand. The meaning
of “heads” is also a part of the question and is also complex. Heads is not an observation—a coin
showing heads can look very different at different angles, distances, lightings and positions. We will
treat this issue of abstraction later in the paper, but for now note that it must all be handled within
the question, not the answer. Questions are complex, subtle things. They are the most important
part of a prediction and selecting which ones to answer is one of the most important skills for an
intelligent agent.

All that having been said, it is also important to note that predictive questions can also be simple.
Perhaps the simplest question is “what will the next observation be,” (say with a cross-entropy loss
measure). Or one might ask whether the third observation from now will be within some subset. If
the observations are boolean we might ask whether the logical AND of the next two will be true. If
they are numeric we might ask whether the square root of the sum of the next seven will be greater
than 10, or whether the sum up to the next negative observation is greater than 100. Or one can ask
simple questions about action dependencies. For example, we might ask what the next observation
will be given that we take a particular next action, or a particular sequence of actions. In classical
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predictive state representations, the questions considered, called tests, ask for the probability that
the next few observations will take particular values if the next few actions were to have particular
values. Many of these questions (but not the last one) are meant as policy dependent. For example, if
a question asks which of two observations will occur first, say death and taxes, then the answer may
well depend on the policy for taking subsequent actions. These simple questions have in common
that we can all see that they are well defined in terms of our minimal ontology—observations,
actions, and time steps. We can also see how their complexity can be increased incrementally. The
grand challenge asks how far this can be taken. Can a comparable clarity of grounding be attained
for much larger, more abstract, and more complex concepts?

4. Abstract Concepts and Causal Variables

Questions and answers provide a formal language for addressing the grand challenge of grounding
knowledge in experience, but do not in themselves directly address the greatest component chal-
lenge, that of abstracting from the particularities of low-level experience to human-level knowledge.
Let us examine in detail a few steps from low-level experience to more abstract concepts. The first
step might be to group together all situations that share the same observation. The term “situation”
here must be further broken down because it is not one of our primitive concepts (observations,
actions, or time steps). It must be reduced to these in order to be well-defined. What is meant by
“situations” here is essentially time steps, as in all the time steps that share the same observation.
With this definition, the concept of all such time steps is clear and explicit.

A further step toward abstraction is to define subsets of observations and group together all time
steps with observations within the same subset. This is natural when observations have multiple
components and the subsets are those observations with the same value for one of the components.
Proceeding along the same lines, we can discuss situations with the same action, with the same
action-observation combination, with the same recent history of observations and actions, or that
fall within any subset of these. All of these might be called history-based concepts. The general
case is to consider arbitrary sets of histories, C ⊂ {O × A}∗. We define abstract history-based
concepts to be sets such that |C| =∞.

It is useful to generalize the idea of history-based concepts to that of causal variables—time
sequences whose values depend only on preceding events. (A history-based concept corresponds
to a binary causal variable.) Formally, the values of causal variable vt = v(ht) are given by a
(possibly stochastic) function v : E 7→ Y . As with concepts, we consider a causal variable to be
abstract if and only if its value corresponds to an infinite set of possible histories. Formally, we
define a causal variable to be abstract if and only if the preimage of every subset of Y is infinite
(∀C ⊆ Y, |{e : v(e) ∈ C}| = ∞). One example of a causal variable is the time sequence of
answers given by the answer function of a prediction. In this sense, answers are causal variables.

Abstract causal variables seem adequate and satisfactory to capture much of what we mean
by abstractions. They capture the idea of representing situations in a variety of ways exposing
potentially relevant similarities between time steps. They formally characterize the space of all
abstract concepts. But it is not enough to just have abstractions; they must be good abstractions.
The key remaining challenge is to identify or find abstract causal variables that are likely to be
useful.
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In this paper we pursue the hypothesis that non-redundant answers to predictive questions are
likely to be useful abstractions. This hypothesis was first stated and tested by Rafols, Ring, Sutton,
and Tanner (2005) in the context of predictive state representations. They stated it this way:

“The predictive representations hypothesis holds that particularly good generalization
will result from representing the state of the world in terms of predictions about possible
future experience.”

This hypothesis is plausible if we take the ultimate goal to be to represent knowledge predictively.
The hypothesis is not circular because there are multiple questions. The hypothesis is that the
answer to one question might be a particularly good abstraction for answering a second question.
An abstraction’s utility for one set of questions can perhaps act as a form of cross validation for its
likely utility for other questions. If a representation would have generalized well in one context,
then perhaps it will in another.

The hypothesis that answers to predictive questions are likely to make good abstractions begs the
question of where the predictive questions come from. Fortunately, guidance as to likely pertinent
questions is available from several directions. First, predictions are generally with respect to some
causal variable of interest. Interesting causal variables include:

1. Signals of intrinsic interest such as rewards, loud sounds, bright lights—signals that have
been explicitly designated by evolution or designer as salient and likely to be important to the
agent

2. Signals that have been found to be associated with, or predictive of, signals already identified
as being of interest (e.g., those of intrinsic salience mentioned in #1)

3. Signals that can be predicted, that repay attempts to predict them with some increase in pre-
dictive accuracy, as opposed to say, random signals

4. Signals that enable the control of other signals, particularly those identified as being of interest
according to #1–#3

There is a fifth property making a causal variable interesting as a target for prediction that is more
subtle and directly relevant to the development in this paper: the causal variable may itself be an
answer to a predictive question. In other words, “what will be the value of this abstraction (causal
variable) in the future (given some way of behaving)?” Questions about abstractions known to be
useful would be considered particularly appealing.

The proposal, overall, is that useful abstractions for answering predictive questions can be found
as answers to other predictive questions about useful abstractions. This is not circular reasoning, but
rather an important form of compositionality: the ability to build new abstractions out of existing
ones. It is a key property necessary for powerful representations of world knowledge.

If questions are to be about (future values of) abstractions, then what should those questions be?
Recall that questions are conditional on a way of behaving – an experiment or policy. But which
experiment? Guidance comes from how the predictions will be used, which will generally be as
part of a planning (optimal decision making) process. Accordingly, we are particularly interested
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in questions about causal variables conditional on a way of behaving that optimizes the causal
variables. The terminations of experiments can be selected in the same way.
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