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Learning from Experience 

My research program is based on understanding intelligence as the process of  learning from 
first-person experience interacting with an environment. As I have said since 1993 on my internet 
homepage:  

“I am seeking to identify general computational principles underlying what we mean by intelligence 
and goal-directed behavior. I start with the interaction between the intelligent agent and its 
environment. Goals, choices, and sources of  information are all defined in terms of  this interaction. 
In some sense it is the only thing that is real, and from it all our sense of  the world is created. How 
is this done? How can interaction lead to better behavior, better perception, better models of  the 
world? What are the computational issues in doing this efficiently and in realtime?” 

The claim is that the proper focus of  intelligence, and thus of  AI research, is on the agent’s first-
person experience—the signals passing back and forth between it and its environment. In some 
sense this is undeniably true and, by definition, could be no other way. The agent’s intelligence is 
revealed only through its half  of  the interaction (its actions) and can only be assessed by the effect 
on the other half  (its observations). For the agent to have knowledge of  the environment can only 
mean for it to have knowledge of  these effects. As far as any agent is concerned, its experience 
stream is all there is. Whatever other ways one may think of  the world—e.g., in terms of  objects, 
physics, or other agents with all their layers of  complexity—from an intelligent agent’s 
perspective all those things are merely patterns in its experience. The experience stream is the 
entire input and the entire output of  the agent’s computations. That intelligence is all and entirely 
about working with and understanding the experience stream is the obvious yet audacious idea that my 
research program is based on. 

The possibility of  prior knowledge might appear to muddy this idea, but really it does not. It is 
true that knowledge enters into the design of  the agent prior to its interaction with the 
environment, but any resulting improvement in its behavior should not be viewed as due to the 
agent’s intelligence, but, rather, as due to the intelligence of  the designer. “Intelligence” as we 
mean it here does not mean simply performing well, but performing well because of  the agent’s 
computations on the experience stream. The upshot is that my research program eschews prior 
knowledge. Prior knowledge will always be present, of  course; a robot must be given appropriate 
sensors and effectors, for example, but such prior knowledge is always just a starting point for 
intelligence. Researching domain knowledge is analogous to designing a better camera or a better 
motor. These are important tasks that must be done well in order for the agent to be effective, but 
they are not the focus of  computational AI, or at least not of  the computational AI that I am 
proposing here. 
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Without spending too much time on it, I also note that the experiential perspective on AI is 
very different from that of  the many researchers developing large language models and other 
“generative AI” methods. These methods use human data to learn and fine-tune artificial neural 
networks that can mimic human behavior, but which are then no longer able to learn. The 
weights of  these systems are frozen when deployed and are literally unaffected by the experience 
stream that occurs during their normal operation—whereas the proposed research is exclusively 
focused on what that effect should be! AI systems that mimic people are extraordinarily useful in 
many ways, but are also strongly limited. It remains possible that the early appeal of  generative 
AI will be another instance of  “the bitter lesson” [197] and that in the long run they will be 
eclipsed by experiential AI [47]. Both approaches should be fully pursued of  course; here we 
propose to fully pursue experiential AI. 

The Alberta Plan for AI Research 

 I propose to pursue experiential AI by following “the Alberta plan for AI research” [195] 
recently proposed by me and my fellow CCAI chairs, Michael Bowling and Patrick Pilarski. The 
plan presumes that intelligence is experiential and that it can be understood in terms of  a 
relatively small number of  general principles, including the basic ideas of  reinforcement learning 
(RL), but also principles that have not yet been discovered or that are incompletely understood. 
The twelve steps of  the plan proceed from simpler to more-complex problem settings, ending 
with the full problem of  model-based RL with hidden state and the need for learned abstractions 
in state and time. Performance in the full setting is the ultimate goal, but focusing on it is 
probably not the best way to make progress in discovering the missing general principles. The 
earlier steps are meant to enable incremental progress in discovering principles by encountering 
each challenge in the simplest setting in which it arises. I discuss examples of  this strategy later in 
this proposal. 

The Alberta plan builds from a base agent with four components that would be immediately 
familiar to most RL researchers, as diagrammed below. 

The base RL agent of  the Alberta plan 
has four components, including a 
perception component that constructs the 
state from low-level observations and 
reactive policies that map the state to low-
level actions. Assisting in the learning of  
the policies are value functions and a 
transition model of  the world used in 
planning. All components are intended 
to be learned online. 
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Designing around a base agent

Our research in agent design begins with the standard or base agent shown in Figure 2, which
is itself based on the “Common Model of the Intelligent Agent” that has been proposed as
common to AI, psychology, control theory, neuroscience, and economics (Sutton 2022). Our
base agent has four primary internal components. Perception is the component that updates
the agent’s summary of its past experience, or state, which is then used by all components.
The reactive policies component includes the primary policy, which selects the action that will
be sent to the environment and which will be updated toward the goal of maximizing reward.
Perception and the primary policy together map observations to actions and thus can serve as
a minimal agent. Our base agent allows for the possibility of other reactive policies, perhaps
maximizing quantities other than reward. Each policy has a corresponding value function
that is used to learn it. The set of all value functions form the value functions component.
Allowing multiple policies and value functions is the main way our base agent di↵ers from the
Common Model of the Intelligent Agent.

The fourth component of the base agent, the transition model component, represents the
agent’s knowledge of the world’s dynamics. The transition model is learned from observed
actions, rewards, and states, without involving the observations. Once learned, the transition
model can take a state and an action and predict the next state and the next reward. In
general, the model may be temporally abstract, meaning that it takes not an action, but an
option (a policy together with a termination condition),6 and predicts the state at the time
the option terminates and the cumulative reward along the way. The transition model is used
to imagine possible outcomes of taking the action/option, which are then evaluated by the
value functions to change the policies and the value functions themselves. This process is
called planning. Planning, like everything else in the architecture, is expected to be continual
and temporally uniform. On every step there will be some amount of planning, perhaps a
series of small planning steps, but planning would typically not be complete in a single time
step and thus would be slow compared to the speed of agent–environment interaction.

Planning is an ongoing process that operates asynchronously, in the background, whenever it
can be done without interfering with the first three components, all of which must operate on
every time step and are said to run in the foreground.7 On every step the new observation must
be processed by perception to produce a state, which is then processed by the primary policy
to produce that time step’s action. The value functions must also operate in the foreground
to evaluate each time step’s new state and the decision to take the previous action. Our
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Figure 2: The base agent of the Alberta Plan consists of four components interconnected by a state
signal constructed by the perception component. All components may be learned.



The plan details twelve steps, each increasing in challenge and complexity, with the following 
titles: 

1. Representation I: Continual supervised learning with given features 
2. Representation II: Supervised feature finding 
3. Prediction I: Continual Generalized Value Function (GVF) prediction learning 
4. Control I: Continual actor-critic control 
5. Prediction II: Average-reward GVF learning 
6. Control II: Continuing control problems 
7. Planning I: Planning with average reward 
8. Prototype-AI I: One-step model-based RL with continual function approximation 
9. Planning II: Search control and exploration 
10. Prototype-AI II: The STOMP progression 
11. Prototype-AI III: Oak 
12. Prototype-IA: Intelligence amplification 

The steps need not be pursued in order, or one at a time. For example, in the first term of  my 
CCAI chair, the focus was initially on how all the agent components fit together to form a 
complete model-based RL agent, that is, on Steps 9-11. Recall that one of  the main outcomes 
was a journal paper [9] describing a prototype AI based on the STOMP progression (the 
progression from SubTasks to Options for solving them to transition Models of  the options used 
in Planning); that work pertained to Step 10. Another major focus in the first term was on 
average-reward and continuing formulations of  RL problems [66,65,64,144,151,d8,d12], which 
pertain to Steps 5 and 6. We then realized that we were being held back by limitations of  our 
function approximator, that is, by limitations of  deep-learning’s backpropagation algorithm. To 
address these, we explored loss of  plasticity and continual backpropagation in our paper in Nature 
[5], which was in large part a retreat to supervised learning and Step 2. 

Continual Supervised Learning 

Although the steps need not be taken in order, there are advantages to doing so, and this is 
what I propose to do in the renewal. In particular, I propose to start by refining linear supervised 
learning (Step 1) and then proceeding to non-linear supervised learning (Step 2). I feel that even 
with given features, continual supervised learning is in need of  refinement and deserves 
substantially more attention prior to introducing the complexities of  the non-linear case. I see 
potential for meaningful, clarifying refinements in three areas:  

1. Normalization of  the input signals, targets, and weight updates so that learning is fast and 
reliable, and to ease the setting or optimization of  meta-parameters such as step sizes. 

2. Meta-learning of  per-weight step sizes, thereby autonomously assessing feature relevance.  
The IDBD algorithm shows that this is possible [128,196], but we have just begun to 
explore how it can be sped up and made more reliable [91]. 

3. Elimination of  all meta-parameters from the learning and meta-learning algorithms. 
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If  all of  these goals are achieved in the linear setting, it will provide a good foundation for our 
real target, Step 2, the non-linear, artificial-neural-network setting.  

We will address three new big challenges in the deep-learning setting of  Step 2, while still 
considering only feedforward supervised-learning networks: 

1. Continual learning. Linear learning with constant step sizes has no difficulty maintaining 
plasticity with continued learning, but this ability is lost in non-linear networks [5,194]. 
Continual backpropagation provides part of  the answer, but further improvements are 
possible, and there are many more ideas to explore and test. 

2. Meta-learning for structural credit assignment and sculpting generalization. Mechanically, 
this is also about optimizing step sizes, as in the IDBD algorithm, but for the full network 
as opposed to a single linear layer [191]. Conceptually, this will enable representation 
learning, in particular, the changing of  how the network generalizes.  

3. Organically-grown network architectures. Conventionally, the weights of  the network are 
learned, but the connections (number of  layers, connection pattern) is chosen by people. 
Really both steps should be automated; the connections should be organically grown in 
response to the needs of  experience. See, for example, “cascade correlation networks” 
(Fahlman & Lebiere 1989), the “pocket” and “tower” algorithms (Gallant 1993), NEAT 
(Stanley & Miikkulainen 2002), columnar-constructive networks [8], and AutoGrow (Wen 
et al. 2020).  

Note that it is #1 that unlocks #2 and #3. Only if  learning continues for a long time is it possible  
to try different ways of  learning or different connection patterns and meta-learn which of  them 
learn faster and generalize better. The theoretical issues are complex (Wolpert 1996, Adam et al. 
2019), but continual learning offers a sound new way of  learning to generalize [103]. 

Impact on AI 

My full research plan is to follow all the steps of  the Alberta plan, yielding a full 
understanding of  model-free and then model-based intelligence centered and grounded in 
experience. The grounding in experience offers the potential of  scaling and performance beyond 
human abilities. If  fully successful, experiential AI would transform the long-term course of  AI 
research. 

 However, a major impact of  this research could also come much more quickly than that. 
Consider just the first two steps of  the Alberta plan as discussed in the previous section. The 
inability of  deep-learning networks to fully ingest new data without retraining from scratch at the 
cost of  millions of  dollars is a pain point in current AI practice. And if  the continually learning 
network could meta-learn better ways of  generalization—rather than relying on human  
programmers to do this—this again could be remarkably useful in practice. If  just Steps 1 and 2 
were done well, then I think the resulting deep learning algorithms would become widely used in 
generative AI and transform the practice of  the current AI industry. 
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